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§0 Holes in classical theory

Holes in Analysis

1. What is the “volume” of a subset of Rd.

2. Integration (Riemann Integration has holes)

• ∃{fn} a sequence of continuous functions on [0, 1] s.t.

– 0 ≤ fn(x) ≤ 1 ∀x ∈ [0, 1].

– fn(x) is monotonically decreasing on n → ∞, i.e. fn(x) ≥ fn+1(x) ∀x.

So, limn→∞ fn(x) exists. Further limn→∞
∫ 1

0 fn(x) dx exists But f is not
Riemann integrable (we can choose appropriate fn).
We want a theory of integration s.t. f is integrable and limn→∞

∫ 1
0 fn(x) dx =∫ 1

0 f(x) dx.
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3. Define L1 = (C[0, 1], ‖·‖1) (the bar represents that we take the completion) where
‖·‖1 is a norm defined as ‖f‖1 =

∫ 1
0 |f(x)| dx (well-defined as f cts).

If f ∈ L1 is f Riemann integrable? Will have to change the definition of integral.
L2 is a hilbert space gives Fourier Analysis.

Holes in Probability

1. Discrete probability has its limitations,

• Toss a unbiased coin 5 times. What is the probability if getting 3 heads? This
is fine.

• Take an infinite sequence of coin tosses (E = {0, 1}N which is uncountable)
and an event A that depends on that infinite sequence. How do you define
P(A)? E.g. Xi ∼ Ber

(
1
2

)
iid and A =

∑n

i=1 Xi

n , the average number of heads.

By strong law of large numbers P
(∑n

i=1 Xi

n → 1
2

)
= 1.

• How to draw a point uniformly at random from [0, 1]? U ∼ U [0, 1]. Probabil-
ity needs axioms to be made rigorous.

2. Define Expectation for a r.v.. Also would want the following if 0 ≤ Xn ≤ 1 and
Xn ↓ X then EXn → EX .
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§1 Introduction

Notation. An ↑ A means that the sequence An is increasing (A1 ⊆ A2 ⊆ . . . ) and⋃
n An = A.

§1.1 Definitions

Definition 1.1 (σ-algebra)
Let E be a (nonempty) set. A collection E of subsets of E is called a σ-algebra if the
following properties hold:

• ∅ ∈ E ;

• A ∈ E =⇒ Ac = E \ A ∈ E ;

• if (An)n∈N is a countable collection of sets in E , ⋃n∈N An ∈ E .

Example 1.1
Let E = {∅, E}. This is a σ-algebra. Also, P(E) = {A ⊆ E} is a σ-algebra.

Remark 1. Since ⋂n An = (
⋃

n Ac
n)c, any σ-algebra E is closed under countable intersec-

tions as well as under countable unions. Note that B \ A = B ∩ Ac ∈ E , so σ-algebras
are closed under set difference.

Definition 1.2 (Measurable Space and Set)
A set E with a σ-algebra E is called ameasurable space. The elements of E are called
measurable sets.

Definition 1.3 (Measure)
Ameasure µ is a set function µ : E → [0, ∞], such that µ(∅) = 0, and for a sequence
(An)n∈N such that the An are disjoint, we have

µ

⋃
n∈N

An

 =
∑
n∈N

µ(An)

This is the countable additivity property of the measure.

Remark 2. (E, E , µ) is a measure space.
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Remark 3. If E is countable, then for any A ∈ P(E) and measure µ, we have

µ(A) = µ

(⋃
x∈A

{x}
)

=
∑
x∈A

µ({x})

Hence, measures are uniquely defined by the measure of each singleton.

Define m : E → [0, ∞] s.t. m(x) = µ({x}), such an m is called a “mass function”, and
measures µ are in 1-1 correspondence with the mass function m. This corresponds to
the notion of a probability mass function.

Here E = P(E) and this is the theory in elementary discrete prob. (when µ({x}) =
1 ∀x ∈ E, µ is called the counting measure. Here µ(A) = |A| ∀A ⊂ E).

For uncountable E however, the story is not so simple and E = P(E) is generally not
feasible. Indeed measures are defined on σ-algebra “generated” by a smaller class A of
simple subsets of E.

Definition 1.4 (Generated σ−algebra)
For a collection A of subsets of E, we define the σ-algebra σ(A) generated by A by

σ(A) = {A ⊆ E : A ∈ E for all σ-algebras E ⊇ A}

So it is the smallest σ-algebra containing A. Equivalently,

σ(A) =
⋂

E⊇A, E a σ-algebra
E

Question
Why is σ(A) a σ-algebra? See Sheet 1, Q1.

§1.2 Rings and algebras

The class A will usually satisfy some properties too, let E be a set and A a collection of
subsets of E. To construct good generators, we define the following.

Definition 1.5 (Ring)
A ⊆ P(E) is called a ring over E if ∅ ∈ A and A, B ∈ A implies B \ A ∈ A and
A ∪ B ∈ A.

Rings are easier to manage than σ-algebras because there are only finitary operators.
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Definition 1.6 (Algebra)
A is called an algebra over E if∅ ∈ A and A, B ∈ A implies Ac ∈ A and A ∪ B ∈ A.

Remark 4. Rings are closed under symmetric difference A 4 B = (B \ A) ∪ (A \ B), and
are closed under intersections A ∩ B = A ∪ B \ A 4 B. Algebras are rings, because
B \ A = B ∩ Ac = (Bc ∪ A)c. Not all rings are algebras, because rings do not need to
include the entire space.

The idea:

• Define a set function on a suitable collection A.

• Extend the set function to a measure on σ(A). (Carathéodory’s Extension the-
orem)

• Such an extension is unique. (Dynkin’s Lemma)

Goal: Start with a “measure” on A that has some nice properties and then extend it to
σ(A).

Definition 1.7 (Set Function)
A set function on a collection A of subsets of E, where ∅ ∈ A, is a map µ : A →
[0, ∞] such that µ(∅) = 0.

• We say µ is increasing if µ(A) ≤ µ(B) for all A ⊆ B in A.

• We say µ is additive if µ(A ∪ B) = µ(A) + µ(B) for disjoint A, B ∈ A and
A ∪ B ∈ A.

• We say µ is countably additive if µ(
⋃

n An) =
∑

n µ(An) for disjoint sequences
An where ⋃n An and each An lie in A.

• We say µ is countably subadditive if µ(
⋃

n An) ≤
∑

n µ(An) for arbitrary se-
quences An under the above conditions.

Remark 5. If µ is countably additive set function on A and A is a ring then µ satisfies all
the previous listed properties.

Proposition 1.1 (Disjointification of countable unions)
Consider ⋃n An for An ∈ E , where E is a σ-algebra (or a ring, if the union is finite).
Then there exist Bn ∈ E that are disjoint such that ⋃n An =

⋃
n Bn.

Proof. Define Ãn =
⋃

j≤n Aj , then Bn = Ãn \ Ãn−1.

6



Remark 6. A measure satisfies all four of the above conditions. Countable additivity
implies the other conditions. Proof on Sheet 1.

Theorem 1.1 (Carathéodory’s theorem)
Let µ be a countably additive set function on a ring A of subsets of E. Then there
exists a measure µ⋆ on σ(A) such that µ⋆|A = µ.

We will later prove that this extended measure is unique.

Proof (Non Examinable). For B ⊆ E, we define the outer measure µ⋆ as

µ⋆(B) = inf

∑
n∈N

µ(An) : An ∈ A, B ⊆
⋃

n∈N
An


If there is no sequence An such that B ⊆

⋃
n∈N An, we declare the outer measure

µ⋆(B) to be ∞. Clearly, µ⋆(∅) and µ⋆ is increasing, so µ⋆ is an increasing set fcn on
P(E).

Definition 1.8 (µ⋆ measurable)
A set A ⊆ E µ⋆ measurable if ∀B ⊆ E µ⋆(B) = µ⋆(B ∩ A) + µ⋆(B ∩ Ac).

We define the class

M = {A ⊆ E : A is µ⋆ measurable}

We shall show that M is a σ-algebra that contains A, µ⋆ |M is a measure on M that
extends µ (i.e. µ⋆|A = µ).

Step 1. µ⋆ is countably sub-additive on P(E): It suffices to prove that for B ⊆ E and
Bn ⊆ E such that B ⊆

⋃
n Bn we have

µ⋆(B) ≤
∑

n

µ⋆(Bn) (†)

We can assume without loss of generality that µ⋆(Bn) < ∞ for all n, otherwise
there is nothing to prove. For all ε > 0 there exists a collection An,m ∈ A such that
Bn ⊆

⋃
m An,m and

µ⋆(Bn) + ε

2n
≥
∑
m

µ(An,m)
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as we took an infimum. Now, since µ⋆ is increasing, and B ⊆
⋃

n Bn ⊆
⋃

n

⋃
m An,m,

we have

µ⋆(B) ≤ µ⋆

(⋃
n,m

An,m

)
≤
∑
n,m

µ(An,m) ≤
∑

n

µ⋆(Bn) +
∑

n

ε

2n
=
∑

n

µ⋆(Bn) + ε

Since ε was arbitrary in the construction, (†) follows by construction.

Step 2. µ⋆ extends µ: Let A ∈ A, and we want to show µ⋆(A) = µ(A).

We can write A = A ∪ ∅ ∪ . . . , hence µ⋆(A) ≤ µ(A) + 0 + · · · = µ(A) by definition
of µ⋆.

If µ⋆ is infinite, there is nothing to prove.

We need to prove the converse, that µ(A) ≤ µ⋆(A). For the finite case, suppose
there is a sequence An where µ(An) < ∞ and A ⊆

⋃
n An. Then, A =

⋃
n(A ∩ An),

which is a union of elements of the ring A. As µ is countably additive on A and
A is a ring, µ is countably subadditive on A and increasing by ??. Hence µ(A) ≤∑

n µ(A ∩ An) ≤
∑

n µ(An). Since the An were arbitrary taking the infimum over
An, we have µ(A) ≤ µ⋆(A) as required.

Step 3. M ⊇ A: Let A ∈ A. We must show that for all B ⊆ E, µ⋆(B) = µ⋆(B ∩ A) +
µ⋆(B ∩ Ac).

We have B ⊆ (B ∩ A) ∪ (B ∩ Ac) ∪ ∅ ∪ . . . , hence by countable subadditivity (†),
µ⋆(B) ≤ µ⋆(B ∩ A) + µ⋆(B ∩ Ac).

It now suffices to prove the converse, that µ⋆(B) ≥ µ⋆(B ∩ A) + µ⋆(B ∩ Ac).
We can assume µ⋆(B) is finite, and so ∀ε > 0 ∃An ∈ A s.t. B ⊆

⋃
n An and µ⋆(B) +

ε ≥
∑

n µ(An). Now, B ∩ A ⊆
⋃

n(An ∩ A), and B ∩ Ac ⊆
⋃

n(An ∩ Ac). All of the
members of these two unions are elements of A, since An ∩ Ac = An \ A. Therefore,

µ⋆(B ∩ A) + µ⋆(B ∩ Ac) ≤
∑

n

µ(An ∩ A) +
∑

n

µ(An ∩ Ac)

≤
∑

n

[µ(An ∩ A) + µ(An ∩ Ac)]

≤
∑

n

µ(An) ≤ µ⋆(B) + ε

Since ε was arbitrary, µ⋆(B) = µ⋆(B ∩ A) + µ⋆(B ∩ Ac) as required.

Step 4. M is an algebra: Clearly∅ lies inM, and by the symmetry in the definition of
M, complements lie in M. We need to check M is stable under finite intersections.
Let A1, A2 ∈ M and let B ⊆ E. We have

µ⋆(B) = µ⋆(B ∩ A1) + µ⋆(B ∩ Ac
1) as A1 ∈ M

= µ⋆(B ∩ A1 ∩ A2) + µ⋆(B ∩ A1 ∩ Ac
2) + µ⋆(B ∩ Ac

1) taking B̃ = B ∩ A1
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We can write A1 ∩ Ac
2 = (A1 ∩ Ac

2)c ∩ A1, and Ac
1 = (A1 ∩ A2)c ∩ Ac

1. Hence

µ⋆(B) = µ⋆(B ∩ A1 ∩ A2) + µ⋆(B ∩ (A1 ∩ A2)c ∩ A1) + µ⋆(B ∩ (A1 ∩ A2)c ∩ Ac
1)

µ⋆(B∩(A1∩A2)c) as A1∈M

= µ⋆(B ∩ A1 ∩ A2) + µ⋆(B ∩ (A1 ∩ A2)c)

which is the requirement for A1 ∩ A2 to lie in M.

Step 5. M is a σ-algebra and µ⋆ is a measure on M:
It suffices now to show that M has countable unions and themeasure respects these
countable unions. Let A =

⋃
n An for An ∈ M. Without loss of generality, let the

An be disjoint. We want to show A ∈ M, and that µ⋆(A) =
∑

n µ⋆(An).

By (†), we have for any B ⊆ E µ⋆(B) ≤ µ⋆(B ∩ A) + µ⋆(B ∩ Ac) + 0 + . . . so we
need to check only the converse of this inequality. Also, µ⋆(A) ≤

∑
n µ⋆(An), so we

need only check the converse of this inequality as well. Similarly to before,

µ⋆(B) = µ⋆(B ∩ A1) + µ⋆(B ∩ Ac
1)

= µ⋆(B ∩ A1) + µ⋆(B ∩ Ac
1 ∩ A2

A2 as A1, A2 disjoint

) + µ⋆(B ∩ Ac
1 ∩ Ac

2)

= µ⋆(B ∩ A1) + µ⋆(B ∩ A2) + µ⋆(B ∩ Ac
1 ∩ Ac

2)
= µ⋆(B ∩ A1) + µ⋆(B ∩ A2) + µ⋆(B ∩ Ac

1 ∩ Ac
2 ∩ A3) + µ⋆(B ∩ Ac

1 ∩ Ac
2 ∩ Ac

3)
= µ⋆(B ∩ A1) + µ⋆(B ∩ A2) + µ⋆(B ∩ A3) + µ⋆(B ∩ Ac

1 ∩ Ac
2 ∩ Ac

3)
= · · ·

=
∑

n≤N

µ⋆(B ∩ An) + µ⋆(B ∩ Ac
1 ∩ · · · ∩ Ac

N )

Since ⋃n≤N An ⊆ A, we have ⋂n≤N Ac
n ⊇ Ac. µ⋆ is increasing, hence, taking limits,

µ⋆(B) ≥
∞∑

n=1
µ⋆(B ∩ An) + µ⋆(B ∩ Ac)

By (†),
µ⋆(B) ≥ µ⋆(B ∩ A) + µ⋆(B ∩ Ac)

as required. Hence M is a σ-algebra. For the other inequality, we take the above
result for B = A.

µ⋆(A) ≥
∞∑

n=1
µ⋆(A ∩ An) + µ⋆(A ∩ Ac) =

∞∑
n=1

µ⋆(An)

So µ⋆ is countably additive on M and is hence a measure on M.
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§1.3 Uniqueness of extension

To address uniqueness of extension, we introduce further subclasses of P(E). Let A be
a collection of subsets of E.

Definition 1.9 (π-system)
A collection A of subsets of E is called a π-system if ∅ ∈ A and A, B ∈ A =⇒
A ∩ B ∈ A.

Definition 1.10 (d-system)
A collection A of subsets of E is called a d-system if

• E ∈ A;

• A, B ∈ A and A ⊆ B then B \ A ∈ A;

• An ∈ A is an increasing sequence of sets then ⋃n An ∈ A.

Remark 7. Equivalently, A is a d-system if

• ∅ ∈ A;

• A ∈ A =⇒ Ac ∈ A

• An ∈ A is a sequence of disjoint sets then ⋃n An ∈ A.

The difference between this and a σ-algebra is the requirement for disjoint sets.

Proof on Sheet 1.

Proposition 1.2
A d-system which is also a π-system is a σ-algebra.

Proof. Sheet 1.

Lemma 1.1 (Dynkin’s Lemma/π-λ/π-d theorem)
Let A be a π-system. Then any d-system that contains A also contains σ(A).

Proof. We define
D =

⋂
D′ is a d-system; D′⊇A

D′

We can show this is a d-system (proof same as in σ(A) on Sheet 1). It suffices to
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prove that D is a π-system, because then it is a σ-algebraa.

We now define
D′ = {B ∈ D : ∀A ∈ A, B ∩ A ∈ D}

We can see that A ⊆ D′, as A is a π-system.

We now show that D′ is a d-system, fix A ∈ A.

• Clearly E ∩ A = A ∈ A ⊆ D′ hence E ∈ D′.

• Let B1, B2 ∈ D′ such that B1 ⊆ B2. Then (B2 \ B1) ∩ A = (B2 ∩ A) \ (B1 ∩ A),
and since Bi ∩ A ∈ D this difference also lies in D, so B2 \ B1 ∈ D′.

• Now, suppose Bn is an increasing sequence converging to B, and Bn ∈ D′.
Then Bn ∩ A ∈ D, and D is a d-system, we have B ∩ A ∈ D, so B ∈ D′.

Hence D′ is a d-system. Also, D′ ⊆ D by construction of D′. But also A ⊆ D′ and D′

is a d-system so D ⊂ D′ as D is the smallest d-system containing A. Thus D = D′,
i.e ∀B ∈ D and A ∈ A, B ∩ A ∈ D (∗).

We then define
D′′ = {B ∈ D : ∀A ∈ D, B ∩ A ∈ D}

Note that A ⊆ D′′ by (∗). Running the same argument as before, we can show that
D′′ is a d-system. So D′′ = D. But then (by the definition of D′′), ∀B ∈ D, A ∈
D =⇒ B ∩ A ∈ D, i.e. D is a π-system (check that ∅ ∈ D).

So D is a σ-algebra containing A, hence D ⊇ σ(A).
aAs D ⊇ A and σ(A) the intersection of all σ-algebras containing A, D ⊇ σ(A).

Theorem 1.2 (Uniqueness of Extension)
Let µ1, µ2 be measures on a measurable space (E, E), such that µ1(E) = µ2(E) < ∞.
Suppose that µ1 and µ2 coincide on a π-system A, such that E ⊆ σ(A). Then µ1 = µ2
on σ(A), and hence on E .

Proof. We define
D = {A ∈ E : µ1(A) = µ2(A)}

This collection contains A by assumption. By Dynkin’s lemma, it suffices to prove
D is a d-system, because then D ⊇ σ(A) ⊇ E giving D = E as D ⊆ E .

• ∅ ∈ D, since µ1(∅) = µ2(∅) = 0;

• A ∈ D =⇒ µ1(A) = µ2(A), thus µ1(Ac) = µ1(E) − µ1(A) = µ2(E) − µ2(A) =
µ2(Ac), so Ac ∈ D (µ1, µ2 finite so this works);
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• LetAn ∈ D be a disjoint sequence then, µ1(
⋃

n An) =
∑

µ1(An) =
∑

µ2(An) =
µ2(
⋃

n An) by countable additivity. So ⋃n An ∈ D.

So D is a d-system.

Remark 8. If An ∈ A an increasing sequence s.t. An ↑ A, then µ(A) = limn→∞ µ(An).
Use this to show that D is a d-system satisfying conditions in ??.

The above theorem applies to finite measures (µ such that µ(E) < ∞) only. However,
the theorem can be extended to measures that are σ-finite, for which E =

⋃
n∈N En

where µ(En) < ∞.

Question
How to show all sets of a σ-algebra E generated by A has a certain property P?

Answer
Consider set G = {A ⊆ E : A has the property P} and have that all elements of A
have the property P .

Method 1: Show that G is a σ-algebra, as it then must contain σ(A) = E .

Method 2: Show that G is a d-system and pick A s.t. it is a π-system and use ??.

Method 3: Monotone Convergence Theorem, we will see it shortly.

§1.4 Borel measures

Definition 1.11 (Borel Sets)
Let (E, τ) be a Hausdorff topological space. The σ-algebra generated by the open
sets of E, i.e. σ(A) where A = {A ⊆ E : A open}, is called the Borel σ-algebra on
E, denoted B(E).
A measure µ on (E, B(E)) is called a Borel measure on E.

Members of B(E) are called Borel sets.

Notation. We write B = B(R).

Definition 1.12 (Radon Measure)
A Radon measure is a Borel measure µ on E such that µ(K) < ∞ for all K ⊆ E
compact.

12



Note that in a Hausdorff space, compact sets are closed and hence measurable.

Definition 1.13 (Probability Measure)
If µ(E) = 1, µ is called a probability measure on E, and (E, E , µ) is called a prob-
ability space, typically denoted instead by (Ω, F , P).

Definition 1.14 (Finite Measure)
If µ(E) < ∞, µ is a finite measure on E.

Definition 1.15 (σ-Finite Measure)
If ∃ countable sequence En ∈ E s.t. µ(En) < ∞ ∀n and E =

⋃
n En, then µ is called

a σ-finite measure.

Remark 9. Arguments that hold for finite measures can usually be extended to σ-finite
measures.

§1.5 Lebesgue measure

One of themain goals for this course is to define a notion of volume for arbitrary sets, we
can do this by constructing a Borel measure µ on B(Rd) s.t µ

(∏d
i=1(ai, bi)

)
=
∏d

i=1(bi −
ai) where ai < bi corresponding to the usual notion of volume of rectangles.

Initially, we will perform this construction for d = 1, and later we will consider product
measures to extend this to higher dimensions.

Theorem 1.3 (Construction of the Lebesgue Measure)
There exists a unique Borel measure µ on R such that

a < b =⇒ µ ((a, b]) = b − a. (†)

µ is called the Lebesgue measure on R.

Proof. First we shall prove the existence of the measure and then uniqueness.

Consider the ring A of finite unions of disjoint intervalsa of the form

A = (a1, b1] ∪ · · · ∪ (an, bn]

where a1 ≤ b1 ≤ a2 ≤ · · · ≤ an ≤ bn. Note that σ(A) = B (see Example Sheetsb).
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Define for each A ∈ A

µ(A) =
n∑

i=1
(bi − ai).

This agrees with (†) for (a, b]. This is additive and well-defined (check).

So, the existence of µ on σ(A) = B follows from ?? if we can show that µ is countably
additive on A.

Remark 10. Suppose µ a finitely additive set function on a ring A. Then µ is count-
ably additive iff

• An ↑ cA; An, A ∈ A =⇒ µ(An) ↑ µ(A) .

• In addition, if µ is finite and An ↓ A s.t. An, A ∈ A then µ(An) ↓ µ(A)d.

Note, these conditions are both iff separately. See Sheet 1 for proof.

So showing µ is countably additive on A is equivalent to showing the following
If An ∈ A, An ↓ ∅ then µ(An) ↓ 0. As A1 ⊇ A2 ⊇ . . . we can consider µ restricted
to A1 which is finite, as A1 a finite union of finite disjoint intervals.e

We shall prove this by contradiction.

Suppose this is not the case, so there exist ε > 0 and Bn ∈ A such that Bn ↓ ∅ but
µ(Bn) ≥ 2ε for infinitely many n (and so wlog for all n).
We can approximate Bn fromwithin by a sequence Cn

f ∈ A s.t. Cn ⊆ Bn and µ(Bn\
Cn) ≤ ε/2n. Suppose Bn =

⋃Nn
i=1(ani , bni ], then define Cn =

⋃Nn
i=1(ani + 2−nε

Nn
, bni ].

Note that the Cn lie in A, and µ(Bn \ Cn) ≤ 2−nε. Since Bn is decreasing, we have
BN =

⋂
n≤N Bn, and

BN \ (C1 ∩ · · · ∩ CN ) = Bn ∩

 ⋃
n≤N

Cc
n

 =
⋃

n≤N

BN \ Cn ⊆
⋃

n≤N

Bn \ Cn

Since µ is increasing and finitely additive and thus subadditive on A,

µ(BN \ (C1 ∩ · · · ∩ CN )) ≤ µ

 ⋃
n≤N

Bn \ Cn

 ≤
∑

n≤N

µ(Bn \ Cn) ≤
∑

n≤N

2−N ε ≤ ε

Since µ(BN ) ≥ 2ε, additivity implies that µ(C1 ∩ · · · ∩ CN ) ≥ ε. This means that
C1 ∩· · ·∩CN cannot be empty. We can add the left endpoints of the intervals, giving
KN = C1 ∩ · · · ∩ CN 6= ∅. By Analysis I, KN is a nested sequence of bounded
nonempty closed intervals and therefore there is a point x ∈ R such that x ∈ KN
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for all Ng. But KN ⊆ CN ⊆ BN , so x ∈
⋂

N Bn, which is a contradiction since⋂
N BN is empty. Therefore, a measure µ on B exists.

Now we prove uniqueness. Suppose µ, λ are measures such that the measure of an
interval (a, b] is b − a. We define truncated measures for A ∈ B

µn(A) = µ (A ∩ (n, n + 1))
λn(A) = λ (A ∩ (n, n + 1])

Then µn, λn are probability measures on B and µn = λn on the π-system of intervals
of the form (a, b] with a < bh. This π-system generates B, so by the uniqueness
theorem for finite measures (??) µn = λn on B. Hence ∀A ∈ B

µ(A) = µ

(⋃
n

A ∩ (n, n + 1]
)

=
∑
n∈Z

µ(A ∩ (n, n + 1])

=
∑
n∈Z

µn(A)

=
∑
n∈Z

λn(A) = · · · = λ(A)

aWe take semi intervals as for A to be a ring, we require the set difference to be in A.
bas all open intervals are in σ(A) and open intervals generate open sets
cincreasing sequence tending to A
dE.g. let An = [n, ∞) with the Lebesgue measure then An ↓ ∅. But µ(An) = ∞ whilst µ(∅) = 0
eWe are actually using, if µ finitely additive on a ring A. Then µ is countably additive iff An ↓
∅, µ(A1) < ∞ =⇒ µ(An) ↓ 0.

fCn means the closure of Cn, i.e. make it a closed set by including the left endpoint.
gAs completeness of R implies

⋂
n

Kn is closed and non empty.
hAs (a, b] ∩ (c, d] = ∅ or (e, f ].

Definition 1.16 (Lebesgue Null Set)
A Borel set B ∈ B is called a Lebesgue null set if λ(B) = 0 where λ is the Lebesgue
measure.

Remark 11. A singleton {x} can be written as ⋂n

(
x − 1

n , x
]
, hence λ(x) = limn

1
n = 0.

Hence singletons are null sets. In particular, λ((a, b)) = λ((a, b]) = λ([a, b)) = λ([a, b]).
Any countable set Q =

⋃
q {q} is a null set. Not all null sets are countable; the Cantor set

is an example.

The Lebesgue measure is translation-invariant. Let x ∈ R, then the set B + x =
{b + x : b ∈ B} lies in B iff B ∈ B, and in this case, it satisfies λ(B + x) = λ(B). We
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can define the translated Lebesgue measure λx(B) = λ(B + x) for all B ∈ B, then
λx((a, b]) = λ((a, b]+x) = λ((a+x, b+x]) = b−a = λ((a, b]). So λx = λ on the π-system
of intervals and so λx = λ on the sigma algebra B (i.e. ∀B ∈ B, λ(B + x) = λ(B)).

Question
Is the Lebesgue measure the only such translation invariant measure on B?

Carathéodory’s theorem extends λ from A to not just σ(A) = B, but actually to M, the
set of outer-measurable sets M ⊇ B, but how large is M?

The class of outer measurable sets M used in Carathéodory’s extension theorem is here
called the class of Lebesgue measurable sets. This class, the Lebesgue σ-algebra, can
be shown to be

M = {A ∪ N : A ∈ B, N ⊆ B, B ∈ B, λ(B) = 0} ) B

§1.6 Existence of non-measurable sets

We now show that B ( P(R) (in fact Mleb ( P(R)).

Consider E = [0, 1) with addition definedmodulo one. By the same argument as before,
the Lebesguemeasure is translation-invariant modulo one. Consider the subgroup Q =
E ∩Q of (E, +). We define x ∼ y for x, y ∈ E if x−y ∈ Q. Assuming the axiom of choice
(uncountable version), we can select a representative from each equivalence class, and
denote by S the set of such representatives. We shall show that S /∈ B.

We can partition E into the union of its cosets, so E =
⋃

q∈Q(S +q) is a disjoint1 union.

Suppose S is a Borel set. Then S + q is also a Borel set2. Therefore by translation invari-
ance of λ and by countable additivity,

λ([0, 1)) = 1 = λ

⋃
q∈Q

(S + q)

 =
∑
q∈Q

λ(S + q) =
∑
q∈Q

λ(S)

But no value for λ(S) ∈ [0, ∞] can be assigned to make this equation hold. Therefore S
is not a Borel set.

Remark 12. We can extend this proof to show that S /∈ Mleb.

One can further show that λ cannot be extended to all subsets P(E).

1Suppose s1 + q1 = s2 + q2 then s1 − s2 = q1 − q2 ∈ Q but then s1, s2 ∈ S by definition E.
2Consider G = {B ∈ B : B + x ∈ B} we can show this is a σ-algebra, see ??.
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Theorem 1.4 (Banach - Kuratowski)
Assuming the continuum hypothesis, there exists no measure µ on the set P([0, 1))
such that µ([0, 1)) = 1 and µ({x}) = 0 for x ∈ [0, 1).

Henceforth, whenever we are on a metric space E, we will work with B(E), which will
be perfectly satisfactory.

§1.7 Probability spaces

Definition 1.17
If a measure space (E, E , µ) has µ(E) = 1, we call it a probability space, and instead
write (Ω, F ,P). We call Ω the outcome space or sample space, F the set of events,
and P the probability measure.

The axioms of probability theory (Kolmogorov, 1933), are

1. P (Ω) = 1,P(∅) = 0;

2. 0 ≤ P (E) ≤ 1 for all E ∈ F ;

3. if An are a disjoint sequence of events in F , then P (
⋃

n An) =
∑

n P (An).

This is exactly what is required by our definition: P is a measure on a σ-algebra.

Remark 13.

• P (
⋃

n An) ≤
∑

n P (An) for all sequences An ∈ F ;

• An ↑ A =⇒ P(An) ↑ P(A);

• An ↓ A =⇒ P(An) ↓ P(A) as P a finite measure.

This definition is what separates probability from analysis.

Definition 1.18 (Independent)
Events (Ai, i ∈ I), Ai ∈ F are independent if for all finite J ⊆ I , we have

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj) .

σ-algebras (Ai, i ∈ I), Ai ⊆ F are independent if for any Aj ∈ Aj , where J ⊆ I is
finite, the Aj are independent.

17



Kolmogorov showed that these definitions are sufficient to derive the law of large num-
bers.

Proposition 1.3
Let A1, A2 be π-systems of sets in F . Suppose P (A1 ∩ A2) = P (A1)P (A2) for all
A1 ∈ A1, A2 ∈ A2. Then the σ-algebras σ(A1), σ(A2) are independent.

Proof. Fix A1 ∈ A1, and define for all A ∈ σ(A2).

µ(A) = P(A1 ∩ A), ν(A) = P(A1)P(A).

Then µ, ν are finite measures and they agree on the π-system A2. Hence by ??,
µ(A) = ν(A) ∀A ∈ σ(A2), i.e. P(A1 ∩ A) = P(A1)P(A) ∀A1 ∈ A1, A2 ∈ σ(A2).

Now repeat same argument, but now by fixing A2 ∈ σ(A2) define for all A ∈ σ(A1)

µ′(A) = P(A ∩ A2), ν ′(A) = P(A)P(A2).

Then µ′, ν ′ are finite measures and they agree on the π-system A1. Hence by ??,
µ′(A) = ν ′(A) ∀A ∈ σ(A1), i.e. P(A1 ∩ A) = P(A1)P(A) ∀A1 ∈ σ(A1), A2 ∈ σ(A2).

This follows by uniqueness.

§1.8 Borel–Cantelli lemmas

Definition 1.19
Let An ∈ F be a sequence of events. Then the limit superior of An is

lim sup
n

An =
⋂
n

⋃
m≥n

Am = {An infinitely often}a

The limit inferior of An is

lim inf
n

An =
⋃
n

⋂
m≥n

Am = {An eventually}b

aConsider ω, if ω ∈ lim supn An then ∀n, ω ∈
⋃

m≥n
Am thus ω must be in an infinite number of

Ans.
bω is in all but finitely many An.

Lemma 1.2 (First Borel–Cantelli lemma)
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Let An ∈ F be a sequence of events such that ∑n P (An) < ∞. Then
P (An infinitely often) = 0.

Proof. For all n, we have

P
(

lim sup
n

An

)
= P

⋂
n

⋃
m≥n

Am

 ≤ P

 ⋃
m≥n

Am

 ≤ a ∑
m≥n

P (Am) → 0

aBy countable subadditivity

This proof did not require that P be a probability measure, just that it is a measure.
Therefore, we can use this for arbitrary measures.

Lemma 1.3 (Second Borel–Cantelli lemma)
Let An ∈ F be a sequence of independent events with ∑n P (An) = ∞. Then
P (An infinitely often) = 1.

Proof. By independence, for all N ≥ n ∈ N and using 1 − a ≤ e−a, we find

P
(

N⋂
m=n

Ac
m

)
=

N∏
m=n

(1 − P (Am)) ≤
N∏

m=n

e−P(Am) = e−
∑N

m=n
P(Am)

As N → ∞, this approaches zero.
Since ⋂N

m=n Ac
m decreases to ⋂∞

m=n Ac
m, P (

⋂∞
m=n Ac

m) = 0 as P (
⋂∞

m=n Ac
m) ≤

P
(⋂N

m=n Ac
m

)
≤ e−

∑N

m=n
P(Am) → 0. So by taking complements P(

⋃∞
m=n An) =

1 ∀n (†).

Let Bn =
⋃∞

m=n Am, Bn decreasing and so Bn ↓
⋂

n Bn =
⋂

n

⋃
m≥n Am = {An i.o}a.

As P(Bn) = 1 by (†), P({An i.o}) = limn→∞ P(Bn) = 1 as probabilities are a finite
measureb.
aAn occurs infinitely often
bRecall the equivalent condition to countable additivity given in the proof of ??.

Remark 14. If An independent, then {An i.o} has either probability 0 or 1 and is called a
“tail event”. Kolmogorov 0-1 law shows this is true for all “tail events”.
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§2 Measurable Functions

§2.1 Definition

Definition 2.1 (Measurable)
Let (E, E), (G, G) be measurable spaces. A function f : E → G is called measurable
if f−1(A) ∈ E ∀A ∈ G, where f−1(A) is the preimage of A under f i.e. f−1(A) =
{x ∈ E : f(x) ∈ A}.

If G = R and G = B, we can just say that f : (E, E) → G is measurable. Moreover, if E is
a topological space and E = B(E), we say f is Borel measurable.

Note that preimages f−1 commutewithmany set operations such as intersection, union,
and complement. This implies that

{
f−1(A) : A ∈ G

}
is a σ-algebra over E, and likewise,{

A : f−1(A) ∈ E
}
is a σ-algebra over G. Hence, if A is a collection of subsets s.t. G ⊃

σ(A) then if f−1(A) ∈ E for all A ∈ A, the class
{
A : f−1(A) ∈ E

}
is a σ-algebra that

contains A and so σ(A). So f is measurable.

If f : (E, E) → R, the collection A = {(−∞, y] : y ∈ R} generates B (Sheet 1). Hence f is
Borel measurable iff f−1((−∞, y]) = {x ∈ E : f(x) ≤ y} ∈ E for all y ∈ R.

If E is a topological space and E = B(E), then if f : E → R is continuous, the preimages
of open sets B are open, and hence Borel sets. The open sets in R generate the σ-algebra
B. Hence, continuous functions to the real line are measurable.

Example 2.1
Consider the indicator function 1A of a set A ⊂ E. 1−1

A (1) = A and 1−1
A (0) = Ac

hence measurable iff A ∈ E .

Example 2.2
The composition ofmeasurable functions ismeasurable. Note that given a collection
of maps {fi : E → (G, G) : i ∈ I}, we can make them all measurable by taking E to
be a large enough σ-algebra, for instance σ

({
f−1

i (A) : A ∈ G, i ∈ I
})

called the σ-
algebra generated by {fi}i∈I .

Proposition 2.1
If f1, f2, . . . are measurable R-valued. Then f1 + f2, f1f2, infn fn, supn fn, lim inf fn,
lim sup fn are all measurable.

Proof. See Sheet 1.
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§2.2 Monotone Class Theorem

Theorem 2.1 (Monotone Class Theorem)
Let (E, E) be a measurable space and A be a π-system that generates the σ-algebra
E . Let V be a vector space of bounded maps from E to R s.t.

1. 1E ∈ V ;

2. 1A ∈ V for all A ∈ A;

3. if f is bounded and fn ∈ V are nonnegative functions that form an increasing
sequence that converge pointwise to f on E, then f ∈ V .

Then V contains all bounded measurable functions f : E → R.

Proof. Define D = {A ∈ E : 1A ∈ V}. Then D is a d-system as 1E ∈ V and for A ⊆ B,
1B\A = 1B − 1A ∈ V as V a vector space so B \ A ∈ D.
If An ∈ D increases to A, we have 1An increases pointwise to 1A, which lies in V by
the (3.) so A ∈ D.

D contains A by (2.). So by Dynkin’s lemma D contains σ(A) = E so E = D i.e.
1A ∈ V ∀A ∈ E .

Since V a vector space it contains all finite linear combinations of indicators ofmeas-
urable sets. Let f : E → R be a bounded measurable function, which we will as-
sume at first is nonnegative. We define

fn(x) = 2−nb2nf(x)c

= 2−n
∞∑

j=0
1An,j (x)

An,j = {x : 2nf(x) ∈ [j, j + 1)}

= f−1
([

j

2n
,
j + 1

2n

))
∈ E .

As f is bounded we do not need an infinite sum but only a finite one. Then fn ≤
f ≤ fn + 2−n. Hence |fn − f | ≤ 2−n → 0 and fn ↑ f .

So 0 ≤ fn ↑ f, fn ∈ V and f is bounded non-negative so f ∈ V by (3.).

Finally, for any f bounded and measurable, f = f+a − f−b. f+, f− are bounded,
nonnegative and measurable, so in V and V a vector space thus f ∈ V .
amax(f, 0)
bmax(−f, 0)
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§2.3 Image Measures

Definition 2.2 (Image Measure)
Let f : (E, E) → (G, G) be a measurable function and µ a measure on (E, E). Then
the image measure ν = µ ◦ f−1 is obtained from assigning ν(A) = µ(f−1(A)) for all
A ∈ G.

Remark 15. This is well defined as f−1(A) ∈ E as f measurable. ν is countably additive
because the preimage satisfies set operations and µ countably additive (See Sheet 1).

Starting from the Lebesguemeasure, we can get all probability measures (in fact we can
get all Radon measures) in this way.

Definition 2.3 (Right-Continuous)
A function f is right-continuous if xn ↓ x =⇒ f(xn) → f(x).

Lemma 2.1
Let g : R → R be a non-constant, increasing, right-continuous function, and set
g(±∞) = limz→±∞ g(z). On I = (g(−∞), g(+∞)) we define the generalised in-
verse f : I → R by

f(x) = inf {y ∈ R : g(y) ≥ x}.

Then f is increasing, left-continuous, and f(x) ≤ y iff x ≤ g(y) for all x ∈ I, y ∈ R.

Remark 16. f and g form a Galois connection.

Proof. Fix x ∈ I .
Let Jx = {y ∈ R : g(y) ≥ x}. Since x > g(−∞), Jx is nonempty and bounded below.
Hence f(x) is a well-defined real number.
If y ∈ Jx, then y′ ≥ y implies y′ ∈ Jx since g is increasing. Since g is right-
continuous, if yn ↓ y, and all yn ∈ Jx, then g(y) = limn g(yn) ≥ x so y ∈ Jx.
So Jx = [f(x), ∞). Hence f(x) ≤ y ⇐⇒ x ≤ g(y) as required.

If x ≤ x′, we have Jx ⊇ Jx′ (as y ∈ Jx ⇐= y ∈ J ′
x), i.e. [f(x), ∞) ⊇ [f(x′), ∞) so

f(x) ≤ f(x′).
Similarly, if xn ↑ x, we have Jx =

⋂
n Jxn

a so [f(x), ∞) =
⋂

n[f(xn), ∞) so f(xn) →
f(x) as xn → x.
aAs y ∈

⋂
n

Jxn ⇐⇒ g(y) ≥ xn ∀n ⇐⇒ g(y) ≥ x ⇐⇒ y ∈ Jx.

Theorem 2.2
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Let g : R → R as in the previous lemma. Then ∃ a unique Radon measure µg on R
such that µg((a, b]) = g(b) − g(a) for all a < b. Further, all Radon measures on R can
be obtained in this way.

Proof. Define I, f as in the previous lemma and λ the Lebesgue measure on I .

f is Borelmeasurable since f−1((−∞, z]) = {x ∈ I : f(x) ≤ z} = {x ∈ I : x ≤ g(z)} =
(−g(∞), g(z)] ∈ B. As {(−∞, z] : z ∈ R} generate B, f measurable.

Therefore, the image measure µg = λ ◦ f−1 exists on B. Then for any −∞ < a <
b < ∞, we have

µg((a, b]) = λ
(
f−1 ((a, b])

)
= λ ({x : a < f(x) ≤ f(b)})
= λ ({x : g(a) < x ≤ g(b)})
= g(b) − g(a)

By the ?? for σ-finite measures, µg is uniquely defined.

Conversely, let ν be a Radon measure on R. Define g : R → R as

g(y) =
{

ν((0, y]) if y ≥ 0
−ν((y, 0]) if y < 0

ν Radon tells us that g(y) is finite for all y so g : R → R. Easy to check g is right-
continuousa. This is an increasing function in y, since ν is a measure. Finally,
ν((a, b]) = g(b) − g(a) which can be seen by case analysis and additivity of the
measure ν. By uniqueness as before, this characterises ν in its entirety.
aFor yn ↓ y where y ≥ 0, (0, yn] ↓ (0, y] and then ν((0, yn]) ↓ ν((0, y]) by countably additivity.
Similarly for y < 0.

Remark 17. Such image measures µg are called Lebesgue–Stieltjes measures associated
with g, where g is the Stieltjes distribution.

Example 2.3
Fix x ∈ R and take g = 1[x,∞). Then µg = δx the dirac measure at x defined for all
A ∈ B by

δx(A) =
{

1 if x ∈ A

0 otherwise

§2.4 Random variables
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Definition 2.4 (Random Variable)
Let (Ω, F ,P) be a probability space, and (E, E) be a measurable space. If X : Ω → E
a measurable function then X is a random variable in E.

When E = R or Rd with the Borel σ-algebra, we simply call X a random variable or
random vector.

Example 2.4
X models a “random” outcome of an experiment, e.g. when tossing a coin Ω =
{H, T}, X = # heads : Ω → {0, 1}.

Definition 2.5 (Distribution)
The law or distribution µX of a random variable X is given by the image measure
µX = P ◦ X−1. It is a measure on (E, E).

When (E, E) = (R, B), µX is uniquely determined by its values on any π-system, we
shall take {(−∞, x] : x ∈ R} and

FX(z) = µX((−∞, z]) = P(X−1(−∞, z]) = P ({ω ∈ Ω : X(ω) ≤ z}) = P (X ≤ z)

The function FX is called the distribution function of X , because it uniquely de-
termines the distribution of X .

Using the properties ofmeasures, we can show that any distribution function satisfies:

1. FX is increasing;

2. FX is right-continuous3;

3. FX(−∞) = limz→−∞ FX(z) = µX(∅) = 0;

4. FX(∞) = limz→∞ FX(z) = µX(R) = P (Ω) = 1.

Proposition 2.2
Given any function F satisfying the previous properties, ∃ a random variable X s.t.
F = FX .

Proof. Let Ω = (0, 1), F = B(0, 1), P the Lebesgue measure λ|(0,1).
Let F be any function satisfying the properties, then F is increasing and right con-

3xn ↓ x =⇒ (−∞, xn] ↓ (−∞, x] hence by countable additivity of P ◦ X−1.
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tinuous so we can define the generalised inverse

X(ω) = inf {x : ω ≤ F (x)} : (0, 1) → R

Hence X is a measurable function and thus a random variable.

FX(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}) = P({ω ∈ Ω : ω ≤ F (x)})
= P({ω ∈ (0, 1) : ω ≤ F (x)})
= P((0, F (x)])
= F (x) − 0

Remark 18. This is similar towhat we saw in IB Probability, if we have F then r.v. F −1(U)
where U ∼ U(0, 1) has the distribution function F , where F −1 is the generalised inverse.

Definition 2.6 (Independent)
Consider a countable collection (Xi : (Ω, F ,P) → (E, E)) for i ∈ I . This collection
of random variables is called independent if the σ-algebras σ(Xi) are independent,
recall σ(Xi) is generated by

{
X−1

i (A) : A ∈ E
}
, the smallest σ-algebra s.t. Xi meas-

urable.

For (E, E) = (R, B) we show on an Sheet 1 that this is equivalent to the condition

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) . . .P (Xn ≤ xn)

for all finite subsets {X1, . . . , Xn} of the Xi.

§2.5 Constructing independent random variables

Question
Given a distribution function F , we know ∃ a r.v. X corresponding to it. But
given an infinite sequence of distribution functions F1, F2, . . . does ∃ independent
r.v. (X1, X2, . . . ) corresponding to them?

Let (Ω, F ,P) = ((0, 1), B(0, 1), λ|(0,1)). We start with Bernoulli random variables.

Any ω ∈ (0, 1) has a binary representation given by (ωi) ∈ {0, 1}N where ω =
∑∞

i=1 2−iωi,
which is unique if we exclude infinitely long tails of zeroes from the binary representa-
tion (same reasoning as 1.00000 . . . = 0.99999 . . . ).
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Definition 2.7 (nth Rademacher function)
The nth Rademacher function Rn : Ω → {0, 1} is given by Rn(ω) = ωn, it extracts
the nth bit from the binary expansion.

Observe that R1 = 1(1/2,1], R2 = 1(1/4,1/2] +1(3/4,1] and so on. Since each Rn can be given
as the sum of finite (2n−1) indicator functions on measurable sets, they are measurable
functions and are hence random variables.

Claim 2.1
Ri are iid Ber(1

2).

Proof. P (Rn = 1) = 1
2 = P (Rn = 0) can be checked by induction.

We now show they are independent. For a finite set (xi)n
i=1, by considering the size

of the intervals that ω can lie in,

P (R1 = x1, . . . , Rn = xn) = 2−n = P (R1 = x1) . . .P (Rn = xn)

Therefore, the Rn are all independent, so countable sequences of independent random
variables indeed exist.
The next step is to construct a sequence of iid r.v.s on U(0, 1).

Now, take a bijection m : N2 → N and define Yk,n = Rm(k,n), the Rademacher functions.
We now define Yn =

∑∞
k=1 2−kYk,n

4.

Lemma 2.2
Any measurable functions of independent random variables are independent.

Claim 2.2
Yn are iid U(0, 1), i.e. µYn = λ|(0,1) and Yn independent.

Proof. They are independent because the Yi are measurable functions of inde-
pendent random variables, e.g. Y1 is a measurable function of Y1,1, Y2,1, . . . ; Y2 of
Y1,2, Y2,2, . . .

The π-system of intervals
(

i
2m , i+1

2m

]
for i = 0, . . . , 2m −1 for m ∈ N generates B(0, 1)

4This converges for all ω ∈ Ω since |Yk,n| ≤ 1.
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as Q dense in R. So by ?? the distribution of Yn is identified on the intervals.

P
(

Yn ∈
(

i

2m
,
i + 1
2m

])
= P

(
i

2m
<

∞∑
k=1

2−kYk,n ≤ i + 1
2n

)
a

= P(Y1,n = y1, . . . , Ym,n = ym) where i

2m
= 0.y1y2 . . . ym

=
m∏

i=1
P(Ym,n = ym) by independence.

= 2−m = λ

(
i

2m
,
i + 1
2m

]
Hence µYn = λ|(0,1) on the π-system and so on B(0, 1).
aThis specifies the first m digits in the binary expansion of Yn.

As before, set Gn(x) = F −1
n (x) which is the generalised inverse. Then Gn are Borel

functions, set Xn = Gn(Yn) for n ∈ N, then as before FXn = Fn and Xn are independent
as Yn are.

§2.6 Convergence of measurable functions

Let (E, E , µ) be a measure space. Let A ∈ E be defined by some property.

Definition 2.8 (Almost Everywhere)
We say that a property defining a set A ∈ E holds µ-almost everywhere if µ(Ac) = 0.

Definition 2.9 (Almost surely)
If µ is a P- measure, we say a property holds P-almost surely or with probability
one, if P(Ac) = 0, i.e. if P(A) = 1.

Definition 2.10 (Convergence Almost Everywhere)
If fn and f are measurable functions on (E, E , µ) → (R, B), we say fn converges to
f µ-almost everywhere if µ({x ∈ E : fn(x) 9 f(x)}) = 0.

For r.v.s, we say Xn → X P-almost surely if P({ω ∈ Ω : Xn(ω) → X(ω)}) = 1.

Definition 2.11 (Convergence in Measure)
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We say fn converges to f in µ-measure if for all ε > 0

µ({x ∈ E : |fn(x) − f(x)| > ε}) → 0,

as n → ∞.

We say Xn → X in P-probability if ∀ε > 0

P(|Xn − X| > ε) → 0

as n → ∞.

Theorem 2.3
Let fn : (E, E , µ) → R be measurable functions.

1. If µ(E) < ∞, then fn → 0 a.e. =⇒ fn → 0 in measure;

2. If fn → 0 in measure, ∃ subsequence nk s.t. fnk
→ 0 a.e.

Proof. Fix ε > 0. Suppose fn → 0 a.e., then for every n,

µ(|fn| ≤ ε) ≥ µ

 ⋂
m≥n

{|fm| ≤ ε}


Let An =

⋂
m≥n {|fm| ≤ ε} which is increasing to ⋃n

⋂
m≥n {|fm| ≤ ε}. So by the

countable additivity of µ,

µ

 ⋂
m≥n

{|fm| ≤ ε}

 → µ

⋃
n

⋂
m≥n

{|fm| ≤ ε}


= µ(|fn| ≤ ε eventually)
≥ µ(|fn| → 0)
= µ(E) as fn → 0 a.e. and µ finite.

Hence,

lim
n→∞

µ(|fn| ≤ ε) = µ(E) =⇒ µ(|fn| > ε) → 0
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Proof. Suppose fn → 0 in measure, choosing ε = 1
k we have

µ

(
|fn| >

1
k

)
→ 0.

So we can choose nk s.t. µ
(
|fnk

| > 1
k

)
≤ 1

k2 . We can choose nk+1 in the same way
s.t. nk+1 > nk. So we get a subsequence nk s.t. µ

(
|fnk

| > 1
k

)
< 1

k2 . Also∑k
1

k2 < ∞,
so∑k µ

(
|fnk

| > 1
k

)
< ∞. So by the first Borel–Cantelli lemma, we have

µ

|fnk
| >

1
k

infinitely often

fnk
6→0

 = 0

so fnk
→ 0 a.e.

Remark 19. The first statement is false if µ(E) is infinite: consider fn = 1(n,∞) on (R, B, µ),
since fn → 0 a.e. but µ(|fn| > ε) = ∞ ∀n.

The second statement is false if we do not restrict to subsequences: consider in-
dependent events An such that P (An) = 1

n , then 1An → 0 in probability since
P (1An > ε) = P (An) = 1

n → 0, but∑n P (An) = ∞, and by the second Borel–Cantelli
lemma, P (1An > ε infinitely often) = 1, so 1An 9 0 almost surely.

Definition 2.12 (Convergence in Distribution)
For X and Xn a sequence of r.v.s, we say Xn

d→ Xa if FXn(t) → FX(t) as n → ∞ for
all t ∈ R which are continuity points of FX .
aXn converges to X in distribution

Remark 20. This definition does not require Xn to be defined on the same probability
space.

Remark 21. If Xn → X in probability, then Xn
d→ X , see Sheet 2 for proof.

Example 2.5
Let (Xn)n∈N be iid Exp(1), i.e. P (Xn > x) = e−x for x ≥ 0.

Question
Find a deterministic fcn g : N → R s.t. a.s. lim sup Xn

g(n) = 1.
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Define An = {Xn ≥ α log n} where α > 0, so P (An) = n−α, and in particular,∑
n P (An) < ∞ if and only if α > 1. By the Borel–Cantelli lemmas, we have for all

ε > 0,

P
(

Xn

log n
≥ 1 infinitely often

)
= 1; P

(
Xn

log n
≥ 1 + ε infinitely often

)
= 0

In other words, P(lim supn
Xn

log n = 1) = 1.

§2.7 Kolmogorov’s zero-one law

Definition 2.13 (Tail σ-Algebra)
Let (Xn)n∈N be a sequence of r.v.s. We can define Tn = σ(Xn+1, Xn+2, . . . )a. Let
T =

⋂
n∈N Tn be the tail σ-algebra, which contains all events in F that depend only

on the ‘limiting behaviour’ of (Xn).
aThe smallest σ-algebra s.t. Xn+1, . . . are measurable.

Theorem 2.4 (Kolmogorov 0-1 Law)
Let (Xn)n∈N be a sequence of independent r.v.s. Let A ∈ T be an event in the tail
σ-algebra. Then P (A) = 1 or P (A) = 0.
If Y : (Ω, T ) → (R, B) is measurable, it is constant almost surely.

Proof. Let Fn = σ(X1, . . . , Xn). Then Fn is generated by the π-system of sets A =
(X1 ≤ x1, . . . , Xn ≤ xn) for any xi ∈ R.
Note that the π-system of sets B = (Xn+1 ≤ xn+1, . . . , Xn+k ≤ xn+k), for arbitrary
k ∈ N and xi ∈ R, generates Tn.
By independence of the sequence, we see that P (A ∩ B) = P (A)P (B) for all such
sets A, B, and so the σ-algebras Tn, Fn generated by these π-systems are independ-
ent. As T ⊆ Tn, Fn and T are independent ∀n.

Let F∞ = σ(X1, X2, . . . ). Then, ⋃n Fn is a π-system that generates F∞. As Fn and
T are independent ∀n, ⋃n Fn independent of T . So F∞, T are independent.

Since T ⊆ F∞, if A ∈ T , A is independent from A ∈ F∞. So P (A) = P (A ∩ A) =
P (A)P (A), so P (A)2 − P (A) = 0 as required.

Finally, if Y : (Ω, T ) → (R, B) measurable, the preimages of {Y ≤ y} lie in T , which
give probability one or zero. Let c = inf {y : FY (y) = 1}, so Y = c almost surely.

Remark 22. This tells us that for Xi iid with finite expectation, lim infn→∞
1
n

∑n
i=1 Xi,

lim supn→∞
1
n

∑n
i=1 Xi are constants a.s.
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§3 Integration

§3.1 Notation

Let f : (E, E , µ) → R be measurable and f ≥ 05.

Notation. We will then define the integral with respect to µ, either written µ(f) or∫
E f dµ =

∫
E f(x) dµ(x).

When (E, E , µ) = (R, B, λ), we write it as
∫

f(x)dx.

Notation. If X is a random variable, we will define its expectation E [X] =
∫

Ω X dP =∫
Ω X(ω) dP(ω).

§3.2 Definition

Definition 3.1 (Simple)
We say that a function f : (E, E , µ) → R is simple if it is of the form

f =
m∑

k=1
ak1Ak

; ak ≥ 0; Ak ∈ E ; m ∈ N

Definition 3.2 (µ-integral)
The µ-integral of a simple function f defined as above is

µ(f) =
m∑

k=1
akµ(Ak)a

which is independent of the choice of representation of the simple function, i.e. well-
defined.

aNote we take 0 · ∞ = 0.

Remark 23.

• We have µ(αf + βg) = αµ(f) + βµ(g) for all nonnegative coefficients α, β and
simple functions f, g.

• If g ≤ f , µ(g) ≤ µ(f), so µ is increasing.

• f = 0 a.e. ⇐⇒ µ(f) = 0.

5f is measurable when mapped to R and f ≥ 0, this is different from saying f non-negative, measurable.
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Definition 3.3 (µ-integral)
For a general non-negative function f : (E, E , µ) → R, we define its µ-integral to be

µ(f) = sup {µ(g) : g ≤ f, g simple}

which agrees with the above definition for simple functions.

Clearly if 0 ≤ f1 ≤ f2 then µ(f1) ≤ µ(f2).

Now, for f : (E, E , µ) → Rmeasurable but not necessarily non-negative, we define f+ =
max(f, 0) and f− = max(−f, 0), so that f = f+ − f− and |f | = f+ + f−.

Definition 3.4 (µ-integrable)
A measurable function f : (E, E , µ) → R is µ-integrable if µ(|f |) < ∞. In this case,
we define its integral to be

µ(f) = µ(f+) − µ(f−)

which is a well-defined real number.

Later we shall prove that µ(|f |) = µ(f+) + µ(f−) hence |µ(f)| ≤ µ(|f |).

If one of µ(f+) or µ(f−) is ∞ and the other finite, we define µ(f) to be ∞ or −∞ respect-
ively (though f is not integrable).

§3.3 Monotone Convergence Theorem

Notation.

• We say xn ↑ x to mean xn ≤ xn+1 ∀n and xn → x.

• We say fn ↑ f to mean fn(x) ≤ fn+1(x) ∀n and fn(x) → f .

Theorem 3.1 (Monotone Convergence Theorem)
Let fn, f : (E, E , µ) → R be measurable and non-negative s.t. fn ↑ f . Then, µ(fn) ↑
µ(f).

Remark 24. This is a theorem that allows us to interchange a pair of limits, µ(f) =
µ(limn fn) = limn µ(fn), i.e. limn

∫
fn dµ =

∫
limn fn dµ for fn ≥ 0 and fn ↑ f .

If gn ≥ 0, letting fn =
∑n

k=1 gk and fn ↑ f =
∑∞

k=1 gk we get limn
∫ ∑n

k=1 gk dµ =∫ ∑∞
k=1 gk dµ =⇒

∑∞
k=1

∫
gk dµ =

∫ ∑
k gk dµ or equivalently µ(

∑
k gk) =

∑
k µ(gk).

This generalises the countable additivity of µ to integrals of non-negative functions.

32



If we consider the approximating sequence f̃n = 2−nb2nfc, as defined in the monotone
class theorem, then this is a non-negative sequence converging to f . So in particular,
µ(f) is equal to the limit of the integrals of these simple functions.

It suffices to require convergence of fn → f a.e., the general argument does not need to
change. The non-negativity constraint is not required if the first term in the sequence f0
is integrable, by subtracting f0 from every term.

Proof. Recall that µ(f) = sup {µ(g) : g ≤ f, g simple}. Let M = supn µ(fn), then
µ(fn) ↑ M .

We now show M = µ(f).

Since fn ≤ f , µ(fn) ≤ µ(f), so taking suprema, M ≤ µ(f).

Now, we need to show µ(f) ≤ M , or equivalently, µ(g) ≤ M for all simple g s.t.
g ≤ f , so by taking suprema, µ(f) = supg µ(g) ≤ M .
Now let g =

∑m
k=1 ak1Ak

where ak ≥ 0 and wlog the Ak ∈ E are disjoint. We define
gn = min(fn, g), where fn is the nth approximation of fn by simple functions as in
the ??. So gn is simple, gn ≤ fn ≤ fn ↑ f , so gn ↑ min(f, g) = g. I.e. gn ↑ g and gn

simple with gn ≤ fn.

Fix ε ∈ (0, 1), and define sets Ak(n) = {x ∈ Ak : gn(x) ≥ (1 − ε)ak}. Since g = ak

on Ak, and since gn ↑ g, Ak(n) ↑ Ak for all k. Since µ is a measure, µ(Ak(n)) ↑ µ(Ak)
by countable additivity.

Also, we have gn1Ak
≥ gn1Ak(n) ≥ (1 − ε)ak1Ak(n) as Ak(n) ⊆ Ak. So as µ(·)

is increasing, we have µ(gn1Ak
) ≥ µ

(
(1 − ε)ak1Ak(n)

)
and so µ(gn1Ak

) ≥ (1 −
ε)akµ(1Ak(n)) as they are simple functions.

Finally, gn =
∑n

k=1 gn1Ak
as gn ≤ g and g supported on⋃n

k=1 Ak and Ak disjoint. So
So as gn1Ak

is simple,

µ(gn) = µ

(
n∑

k=1
gn1Ak

)

=
n∑

k=1
µ(gn1Ak

)

≥
n∑

k=1
(1 − ε)akµ(Ak(n))

↑
n∑

k=1
(1 − ε)akµ(Ak)

= (1 − ε)µ(g).
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Then,

(1 − ε)µ(g) ≤ lim
n

µ(gn) ≤ a lim
n

µ(fn) ≤ M

so µ(g) ≤ M
1−ε ∀ε ∈ (0, 1) hence µ(g) ≤ M .

aAs gn ≤ fn

§3.4 Linearity of Integral

Theorem 3.2 (Linearity of Integral)
Let f, g : (E, E , µ) → R be nonnegative measurable functions. Then ∀α, β ≥ 0,

• µ(αf + βg) = αµ(f) + βµ(g);

• f ≤ g =⇒ µ(f) ≤ µ(g);

• f = 0 a.e. ⇐⇒ µ(f) = 0.

Proof. If f̃n, g̃n are the approximations of f and g by simple functions from the ??
let fn = min(f̃n, n)a and gn = min(g̃n, n). Then fn, gn are simple and fn ↑ f and
gn ↑ g. Then αfn + βgn ↑ αf + βg, so by MCTb, µ(fn) ↑ µ(f), µ(gn) ↑ µ(g) and
µ(αfn + βgn) ↑ µ(αf + βg). As fn, gn simple µ(αfn + βgn) = αµ(fn) + βµ(gn) ↑
αµ(f) + βµ(g). So αµ(f) + βµ(g) = µ(αf + βg).

The second part is obvious from definition.

If f = 0 a.e, then 0 ≤ fn ≤ f , so fn = 0 a.e. but fn simple =⇒ µ(fn) = 0. As
µ(fn) ↑ µ(f) so µ(f) = 0.
Conversely, if µ(f) = 0, then 0 ≤ µ(fn) ↑ µ(f) so µ(fn) = 0 ∀n =⇒ fn = 0 a.e..
But fn ↑ f =⇒ f = 0 a.e.
aThis ensures that fn is not an infinite sum of indicators, as discussed in proof of ?? (we assumed f
bounded).

b??

Remark 25. Functions such as 1Q are integrable and have integral zero. They are ‘identi-
fied’ with the zero element in the theory of integration.

Theorem 3.3 (Linearity of Integral)
Let f, g : (E, E , µ) → R be integrable. Then ∀α, β ∈ R,

• µ(αf + βg) = αµ(f) + βµ(g);

• f ≤ g =⇒ µ(f) ≤ µ(g);
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• f = 0 a.e. =⇒ µ(f) = 0.

Proof. Left as an exercise, just use f = f+ − f− and use definitions and µ(f) =
µ(f+) − µ(f−) etc.

§3.5 Fatou’s lemma

Example 3.1
Let fn = 1(n,n+1), fn ≥ 0 with fn → 0 as n → ∞. λ(fn) = 1 but λ(0) = 0.

Lemma 3.1 (Fatou’s lemma)
Let fn : (E, E , µ) → R be measurable, non-negative functions. Then µ(lim infn fn) ≤
lim infn µ(fn).

Remark 26. Recall that lim infn xn = supn infm≥n xm and lim supn xn = infn supm≥n xm.
In particular, lim supn xn = lim infn xn implies that limn xn exists and is equal to
lim supn xn and lim infn xn. Hence, if the fn converge to some measurable function f ,
we must have µ(f) ≤ lim infn µ(fn).

Proof. We have infm≥n fm ≤ fk for all k ≥ n, so by taking integrals, µ(infm≥n fm) ≤
µ(fk). Thus,

µ

(
inf

m≥n
fm

)
≤ inf

k≥n
µ(fk) ≤ sup

n
inf
k≥n

µ(fk) = lim inf µ(fk) (†)

Note that infm≥n fm increases to supn infm≥n fm = lim infn fn.

Let gn = infm≥n fn, then gn ≥ 0 and gn ↑ supn gn = supn infm≥n fm = lim infn fn. By
MCT µ(gn) ↑ µ(lim infn fn) so by taking limits in (†), µ(lim infn fn) ≤ lim inf µ(fn).

§3.6 Dominated Convergence Theorem

Theorem 3.4 (Dominated Convergence Theorem)
Let fn, f : (E, E , µ) be measurable functions s.t. |fn| ≤ g a.e., for some integrable fcn
g, so µ(g) < ∞a, and fn → f pointwise (or a.e.) on E.
Then fn and f are also integrable, and µ(fn) → µ(f).

aNote g ≥ |fn| ≥ 0.
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Proof. Clearly µ(|fn|) ≤ µ(g) < ∞, so the fn are integrable. Taking limits in |fn| ≤ g,
we have |f | ≤ g, so f is also integrable by the same argument and as the limit of
measurable fcns is measurable.

Now, g ± fn ≥ 0, and converges pointwise to g ± f . Since limits are equal to the
limit inferior when they exist, by Fatou’s lemma, we have

µ(g)+µ(f) = µ(g+f) = µ
(
lim inf

n
(g + fn)

)
≤ lim inf

n
µ(g+fn) = µ(g)+lim inf

n
µ(fn)

Hence µ(f) ≤ lim infn µ(fn) as µ(g) finite. Likewise, µ(g) − µ(f) ≤ µ(g) −
lim supn µ(fn), so µ(f) ≥ lim supn µ(fn), so

lim sup
n

µ(fn) ≤ µ(f) ≤ lim inf
n

µ(fn)

But since lim infn µ(fn) ≤ lim supn µ(fn), the result follows.

Remark 27. In fact, µ(|fn − f |) → 0 as |fn − f | ≤ |fn| + |f | ≤ g + g = 2g and 2g is
integrable so by DCT (??) proved.

If Xn → X P a.s., and |Xn| ≤ Y andE[Y ] < ∞ thenE[Xn] → E[X] andE[|Xn − X|] → 0.
In particular, if |Xn| ≤ M ∀n, for some M > 0, M ∈ R then E[|Xn − X|] → 0 (Bounded
Convergence Theorem)6.

Remark 28. DCT also holds for convergence in P-prob, where if Xn → X in P probability
then we get E[Xn] → E[X] and E[|Xn − X|] → 0.

Proof. Suppose E[|Xn − X|] 6→ 0. Then ∃ a subsequence nk s.t. E[|Xnk
− X|] > ε ∀k

for some ε > 0. Now Xn → X in P prob then Xnk
→ X in P prob by definition. By

??, ∃nkl
s.t. Xnkl

→ X a.s. But then by DCT, E
[∣∣∣Xnkl

− X
∣∣∣] → 0 E.

Theorem 3.5 (Bounded Convergence Theorem)
If Xn → X in P prob and |Xn| ≤ M for some constant M > 0, ∀n ≥ 0. Then
E[|Xn − X|] → 0.

This is quite useful in probability.

Example 3.2
Let E = [0, 1] with the Lebesgue measure. Let fn → f pointwise and the fn are
uniformly bounded, so supn ‖fn‖∞ ≤ g for some g ∈ R. Then since µ(g) = g < ∞,
the DCT implies that fn, f are integrable and µ(fn) → µ(f) as n → ∞.

6This works as with finite measure then E[M ] is finite
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In particular, no notion of uniform convergence of the fn is required as in Riemann
Integrals.

Remark 29. FTC states that

1. Let f : [a, b] → R be continuous and setF (t) =
∫ t

a f(x) dx7. ThenF is differentiable
on [a, b] with F ′ = f .

2. Let F : [a, b] → R be differentiable and F ′ is continuous, then
∫ b

a F ′(x) dx = F (b)−
F (a).

The proof of the fundamental theorem of calculus requires only the fact that∫ x+h

x
dt = h

This is a fact which is obviously true of the Riemann integral and also of the Lebesgue
integral.

Therefore, for any continuous function f : [0, 1] → R, we have∫ x

0
f(t) dt︸ ︷︷ ︸

Riemann integral

= F (x) =
∫ x

0
f(t) dµ(t)︸ ︷︷ ︸

Lebesgue integral

So these integrals coincide for continuous functions.

Remark 30. We can generalise the FTC for Lebesgue integrals:
If f : [a, b] → R is Lebesgue integrable and F (t) =

∫ t
a f(x) dx. Then,

lim
h→0

F (t + h) − F (t)
h

= lim
h→0

∫ t+h
t f(x) dx

h
= f(t) a.e.

This is the Lebesgue differentiation theorem, studied in Analysis of Functions.

Remark 31. We can show that all Riemann integrable functions are µ⋆-measurable,
where µ⋆ is the outer measure of the Lebesgue measure, as defined in the proof of
Carathéodory’s theorem. However, there exist certain Riemann integrable functions
that are not Borel measurable. We can modify such an f on a Lebesgue measure 0 set
to make it Borel measurable, i.e. ∃f̃ s.t. f̃ = f on A and λ(Ac) = 0 and

∫
f̃ dx =

∫
f dx.

A (bounded) Riemann integrable fcn f : [a, b] → R is Lebesgue integrable in the follow-
ing sense. If f is bounded on [a, b], f is R-integrable iff

λ(µ({x ∈ [0, 1] : f is discontinuous at x})) = 0,

i.e. f is continuous a.e.

The standard techniques of Riemann integration, such as substitution and integration
by parts, extend to all bounded measurable functions by the monotone class theorem.

7This is a Lebesgue integral
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Example 3.3
1Q on [0, 1] is a bounded function on a bounded interval. The set of discontinuity
points is [0, 1] which is not measure 0, thus not Riemann Integrable. But this is
Lebesgue integrable and 1Q = 0 λ a.s., so λ(1Q) = 0.

Theorem 3.6 (Substitution Formula)
Let φ : [a, b] → R, φ strictly increasing and continuously differentiable. Then ∀g

Borel fcns, g ≥ 0 on [φ(a), φ(b)],
∫ φ(b)

φ(a) g(y) dy =
∫ b

a g(φ(x))φ′(x) dx (⋆).

Proof. Let V be the set of all measurable fcns g for which (⋆) holds. Then by linearity
of integral, V is a vector space.

• 1 ∈ V by FTC (2), 1(c,d] ∈ V by FTC (2).

• If fn ∈ V , fn ↑ f , fn ≥ 0 then by ?? f ∈ V .

Hence by ??, (⋆) holds ∀g ≥ 0 measurable.

Theorem 3.7 (Differentiation Under The Integral Sign)
Let U ⊆ R be an open set and (E, E , µ) be a measure space. Let f : U × E → R be
s.t.

1. x 7→ f(t, x) is integrable ∀t;

2. t 7→ f(t, x) is differentiable ∀x ∈ E;

3. ∃g : E → R integrable s.t.
∣∣∣∂f

∂t

∣∣∣ < g(x) ∀t ∈ U, x ∈ E;

Then x 7→ ∂f
∂t is integrable ∀t and,

F (t) =
∫

E
f(t, x) dµ(x) =⇒ F ′(t) =

∫
E

∂f

∂t
(t, x) dµ(x)

Proof. Fix t. By the mean value theorem,

gh(x) = f(t + h, x) − f(t, x)
h

−∂f

∂t
(t, x) =⇒ |gh(x)| =

∣∣∣∣∂f

∂t

(
t̃, x
)

− ∂f

∂t
(t, x)

∣∣∣∣ ≤ 2g(x)

Note that g is integrable. By differentiability of f , we have gh → 0 as h → 0, so by
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DCT, µ(gh) → µ(0) = 0. By linearity of the integral,

µ(gh) =
∫

E f(t + h, x) − f(t, x) dµ(x)
h

−
∫

E

∂f

∂t
(t, x) dµ(x)

Hence, F (t+h)−F (t)
h − F ′(t) → 0.

Example 3.4 (Integrals and Image Measures.)
For a measurable function f : (E, E , µ) → (G, G) with image measure ν = µ ◦ f−1

on (G, G). If g : G → R is a measurable, non-negative function then,

µ ◦ f−1(g) = ν(g) =
∫

G
g dν =

∫
G

g dµ ◦ f−1 =
∫

E
g(f(x)) dµ(x) = µ(g ◦ f)

Proof on Sheet 2, use monotone class theorem and first prove for g indicator fcns
and then simple functions.

In particular, for X : (Ω, F ,P) → R and X ≥ 0 measurable, we have,

E [g(X)] =
∫

Ω
g(X(ω)) dP(ω) =

∫
g dµX ,

where µX = P ◦ X−1 is the distribution of X .

Example 3.5 (Densities of Measures)
If f : (E, E , µ) → R is a measurable non-negative function, we can define ν(A) =
µ(f1A) for any measurable set A, which is again a measure on (E, E) by the ??. For
An disjoint,

ν

( ∞⋃
i=1

Ai

)
= µ(f1∪Ai)

= µ(f
∞∑

i=1
1Ai)

= µ(
∞∑

i=1
f1Ai)

=
∞∑

i=1
µ(f1Ai) by MCT

=
∞∑

i=1
ν(Ai).
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In particular, if g : (E, E) → R is measurable, ν(g) = µ(fg) =
∫

E g(x)f(x) dµ(x) =∫
E g dν(f). This follows by definition for g indicator functions, by additivity extends
to simple functions and by ?? to all measurable non-negative functions.

We call f the density of ν with respect to µ. This is unique as µ(f1A) = µ(g1A) ∀A ∈
E =⇒ f = g µ a.e. (proved on Sheet 2).

In particular, for µ = λ, ∀f Borel ∃ a Borel measure ν on R given by ν(A) =∫
A f(x) dx and then ∀g Borel, g ≥ 0 ν(g) =

∫
f(x)g(x) dx. We say ν has density

f . This ν is a prob measure on (R, B) iff
∫

f(x) dx = 1.

For λ : (Ω, F ,P) → R, if the law µX = P ◦ X−1 has the density fX (wrt
λ), we call fX the probability density function of X . Then P(X ∈ A) =
P ◦ X−1(A) = µX(A) =

∫
A fX(x) dx ∀A ∈ B. Taking A = (−∞, x], we get

P(X ≤ x) = FX(x) =
∫ x

−∞ fX(x) dx.
∀g Borel, g ≥ 0,E[g(x)] =

∫
g(x) dµX(x) fromprevious example and

∫
g(x) dµX(x) =

ν(g) =
∫

g(x)fX(x) dx.
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§4 Product Measures

§4.1 Integration in product spaces

Let (E1, E1, µ1), (E2, E2, µ2) be finite measure spaces. On E = E1 × E2, we can consider
the π-system of ‘rectangles’ A = {A1 × A2 : A1 ∈ E1, A2 ∈ E2}. Then we define the σ-
algebra E = E1 ⊗ E2 = σ(A) on the product space.

If the Ei are topological spaces with a countable basis, then B(E1 ×E2) = B(E1)⊗B(E2)
where we take the product topology.

Lemma 4.1
Let f : (E, E) → R bemeasurable. Then ∀x1 ∈ E1, the fcn (x2 7→ f(x1, x2)) : (E2, E2) →
R is E2-measurable.

Proof. Let

V = {f : (E, E) → R : f bounded, measurable, conclusion of the lemma holds}

This is a R-vector space, and 1E , 1A ∈ V ∀A = A1 × A2 ∈ A, since 1A(x1, x2) =
1A1(x1)1A2(x2) thus fixing x1 gives 0 or 1A2 .

Now, let 0 ≤ fn increase to f , fn ∈ V . Then (x2 7→ f(x1, x2)) = limn(x2 7→
fn(x1, x2)), so it is E2-measurable as it’s a limit of a sequence of measurable func-
tions. Then by the ??, V contains all bounded measurable functions. This extends
to all measurable functions by truncating the absolute value of f to n ∈ N, then the
sequence of such bounded truncations converges pointwise to f .

Lemma 4.2
Let f : (E, E) → R be measurable s.t.

1. f is bounded; or

2. f is nonnegative.

Then the map x1 7→
∫

E2
f(x1, x2) dµ2(x2) is µ1-measurable and is boundeda or non-

negative respectively.
aAs µ2 is a finite measure.

Remark 32. In case (2), the map on x1 may evaluate to infinity, but the set of values{
x1 ∈ E1 :

∫
E2

f(x1, x2) dµ2(x2) = ∞
}
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lies in E1.

Generally, a fcn f taking values in [0, ∞] is measurable means f−1({∞}) ∈ E1 and
f−1(A) ∈ E1 ∀A ∈ B.

Proof. Let

V = {f : (E, E) → R : f bounded, measurable, conclusion of the lemma holds}

This is a vector space by linearity of the integral. 1E ∈ V , since
∫

E2
1E(x1, x2) dµ2(x2) =

1E1µ2(E2) is non-negative and bounded. 1A ∈ V ∀A ∈ A, because 1A1(x1)µ2(A2)
is E1-measurable, non-negative, and bounded since it is at most µ2(E2) < ∞.

Now let fn be a sequence of non-negative functions that increase to f , where fn ∈ V .
Then by the ??,∫

E2
lim

n→∞
fn(x1, x2) dµ2(x2) = lim

n→∞

∫
E2

fn(x1, x2) dµ2(x2)

is an increasing limit of E1-measurable functions, so is E1-measurable. It is bounded
by µ2(E2)‖f‖∞, or non-negative as required. So f ∈ V . By the ??, the result for
bounded functions holds.

Theorem 4.1 (Product Measure)
There ∃ a uniquemeasureµ = µ1⊗µ2 on (E, E) such thatµ(A1×A2) = µ1(A1)µ2(A2)
for all A1 ∈ E1, A2 ∈ E2.

Proof. A is a π-system generating E and µ a finite measure, so by the ??, µ unique.

We define for A ∈ E ,

µ(A) =
∫

E1

(∫
E2

1A(x1, x2) dµ2(x2)
)

dµ1(x1) .

This is well-defined by the two previous lemmas.

We have

µ(A1 × A2) =
∫

E1

(∫
E2

1A1(x1)1A2(x2) dµ2(x2)
)

dµ1(x1)

=
∫

E1
1A1(x1)µ2(A2) dµ1(x1)

= µ1(A1)µ2(A2)
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Clearly µ(∅) = 0, so it suffices to show countable additivity. Let An be disjoint sets
in E . Then

1(
⋃

n
An) =

∑
n

1An = lim
n→∞

n∑
i=1

1An

Then by the ?? and the previous lemmas,

µ

(⋃
n

An

)
=
∫

E1

(∫
E2

lim
n→∞

n∑
i=1

1Ai dµ2(x2)
)

dµ1(x1)

=
∫

E1

(
lim

n→∞

∫
E2

n∑
i=1

1Ai dµ2(x2)
)

dµ1(x1)

= lim
n→∞

∫
E1

(∫
E2

n∑
i=1

1Ai dµ2(x2)
)

dµ1(x1)

= lim
n→∞

n∑
i=1

∫
E1

(∫
E2

1Ai dµ2(x2)
)

dµ1(x1)

= lim
n→∞

n∑
i=1

µ(Ai)

=
∞∑

n=1
µ(An)

Remark 33. Note µ(A) =
∫

E2

(∫
E1

1A(x1, x2) dµ1(x1)
)

dµ2(x2) by just swapping the order
of integration in the previous lemmas and proofs and then by ??.

§4.2 Fubini’s theorem

Theorem 4.2 (Fubini-Tonelli)
Let (E, E , µ) = (E1 × E2, E1 ⊗ E2, µ1 ⊗ µ2) be a finite measure space.

1. Let f : E → R be measurable, non-negative. Then

µ(f) =
∫

E
f dµ

=
∫

E1

(∫
E2

f(x1, x2) dµ2(x2)
)

dµ1(x1)

=
∫

E2

(∫
E1

f(x1, x2) dµ1(x1)
)

dµ2(x2)
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2. Let f : E → R be a µ-integrable function (on the product measure). Let

A1 =
{

x1 ∈ E1 :
∫

E2
|f(x1, x2)| dµ2(x2) < ∞

}
.

Define f1 : E1 → R by f1(x1) =
∫

E2
f(x1, x2) dµ2(x2) on A1 and 0 elsewhere.

Then µ1(Ac
1) = 0, f1 is µ1-integrable and µ(f) = µ1(f1) = µ1(f11A1), and

defining A2 symmetrically, µ(f) = µ2(f2) = µ2(f21A2).

Remark 34. If f is bounded, A1 = E1. Note, for f(x1, x2) = x2
1−x2

2
(x2

1+x2
2)2 on (0, 1)2, we have

µ1(f1) 6= µ2(f2), but f is not Lebesgue integrable on (0, 1)2.

Proof. By the definition of the product measure, first statement is true for f = 1A

for A ∈ E . Then, by linearity of the integral, this extends to simple functions.
For general fcn f ≥ 0 by ?? and the standard approximation by simple fcns fn =
min(2−nb2nfc, n), the first statement follows.

Now let f be µ-integrable. Define h : E1 → [0, ∞] as h(x1) =
∫

E2
|f(x1, x2)| dµ2(x2).

By ??, h is measurable (as |f | ≥ 0), is non-negative, so A1 ∈ E1
a.

Then by the first part, µ1(h) = µ(|f |) < ∞. So f1 is µ1-integrable. We have µ1(Ac
1) =

0, otherwise µ1(h) ≥ µ1(h1Ac
1
) = ∞ E.

Setting, f±
1 =

∫
E2

f±(x1, x2) dµ2(x2) we see that f1 = (f+
1 − f−

1 )1A1 . Also by the
first part, µ1(f+

1 ) = µ(f+) < ∞ and µ1(f−
1 ) = µ(f−) < ∞. Hence, µ(f) = bµ(f+) −

µ(f−) = µ1(f+
1 ) − µ1(f−

1 ) = cµ1(f1) as required.
ah measurable =⇒ h−1({∞}) ∈ E1. A1 = h−1({∞})c thus in E1.
bAs f integrable
cAs f1 integrable due to µ1(Ac

1) = 0.

Remark 35. The proofs above extend to σ-finite measures µ.

Let (Ei, Ei, µi) be measure spaces with σ-finite measures. Note that (E1 ⊗ E2) ⊗ E3 =
E1 ⊗ (E2 ⊗ E3), by a π-system argument using Dynkin’s lemma. So we can iterate the
construction of the productmeasure to obtain ameasure µ1⊗· · ·⊗µn

8, which is a unique
measure on (

∏n
i=1 Ei,

⊗n
i=1 Ei)with the property that themeasure of a hypercubeµ(A1×

An) is the product of the measures of its sides µi(Ai).

In particular, we have constructed the Lebesgue measure µn =
⊗n

i=1 µ on Rn. Applying
Fubini’s theorem, for functions f that are either non-negative and measurable or µn-
integrable, we have∫

Rn
f dµn =

∫
· · ·
∫
R...R

f(x1, . . . , xn) dµ(x1) . . . dµ(xn)

8This is associative.
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§4.3 Product probability spaces and independence

Proposition 4.1
Let X1, . . . , Xn be r.v.s, Xi : (Ω, F ,P) → (Ei, Ei). Set (E, E) = (

∏n
i=1 Ei,

⊗n
i=1 Ei).

Consider X : (Ω, F ,P) → (E, E) given by X(ω) = (X1(ω), X2(ω), . . . , Xn(ω)). Then
X is E-measurable and the following are equivalent.

1. X1, . . . , Xn are independent random variables;

2. µX =
⊗n

i=1 µXi ;

3. for all bounded and measurable fi : Ei → R, E [
∏n

i=1 fi(Xi)] =
∏n

i=1 E [fi(Xi)].

Proof. To show X measurable suffices to check X−1(A1 × · · · × An) ∈ F , where
Ai ∈ Ei ∀i as this is a π-system generating E .

X−1(A1 × · · · × An) = {ω : X1(ω) ∈ A1, . . . , Xn(ω) ∈ An}

=
n⋂

i=1
X−1

i (Ai).

Xi measurable so X−1
i (Ai) ∈ F and so the intersection is in F .

(1) =⇒ (2): Consider the π-system A of rectangles A =
∏n

i=1 Ai for Ai ∈ Ei, as
this generates E suffices to check equality on it.

Since µX is an image measure, then

µX(A1 × · · · × An) = P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1) . . .P (An) =
n∏

i=1
µXi(Ai)

=
(

n⊗
i=1

µXi

)
(A).

(2) =⇒ (3): By Fubini’s theorem,

E
[

n∏
i=1

fi(Xi)
]

= µX

(
n∏

i=1
fi(xi)

)

=
∫

E
f(x) dµX(x)

=
∫

· · ·
∫

Ei

(
n∏

i=1
fi(xi)

)
dµX1(x1) . . . dµX2(x2)

=
n∏

i=1

∫
Ei

fi(xi) dµXi(xi)
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=
n∏

i=1
E [fi(Xi)]

(3) =⇒ (1): Let fi = 1Ai for any Ai ∈ Ei. These are bounded and measurable
functions. Then

P (X1 ∈ A1, . . . , Xn ∈ An) = E
[

n∏
i=1

1Ai(Xi)
]

=
n∏

i=1
E [1Ai(Xi)] =

n∏
i=1

P (Xi ∈ Ai)

So the σ-algebras generated by the Xi are independent as required.
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§5 Lp Spaces, Norms and Inequalities

§5.1 Norms

Definition 5.1 (Norm)
A norm on a real vector space is a map ‖ · ‖V : V → [0, ∞) s.t.

1. ‖λv‖ = |λ| · ‖v‖;

2. ‖u + v‖ ≤ ‖u‖ + ‖v‖;

3. ‖v‖ = 0 ⇐⇒ v = 0.

Definition 5.2 (Lp)
Let (E, E , µ) be a measure space. We define Lp(E, E , µ) = Lp(µ) = Lp for the space
of measurable functions f : E → R s.t. ‖f‖p is finite, where

‖f‖p =

(
∫

E |f(x)|p dµ(x))
1
p 1 ≤ p < ∞

ess sup |f | = inf {λ ≥ 0 : |f | ≤ λ µ-a.e.} p = ∞

We must check that ‖ · ‖p as defined is a norm.
Clearly (1) holds for all 1 ≤ p < ∞ by linearity of integral and for p = ∞ its obvious.
Property (2) holds for p = 1 and p = ∞, and we will prove later that this holds for other
values of p by Minkowski inequality.
The last property does not hold: f = 0 implies ‖f‖p = 0, but ‖f‖p = 0 implies only that
|f |p = 0 a.e., so f is zero a.e. on E.

Therefore, to rigorously define the norm, we must construct the quotient space Lp of
functions that coincide a.e.. We write [f ] for the equivalence class of functions that are
equal a.e. The functional ‖ · ‖p is then a norm on Lp = {[f ] : f ∈ Lp}.

Proposition 5.1 (Chebyshev’s Inequality, Markov’s Inequality)
Let f : E → R be non-negative and measurable. Then ∀λ > 0,

µ({x ∈ E : f(x) ≥ λ}) = µ(f ≥ λ) ≤ µ(f)
λ

Proof. Integrate the inequality λ1{f≥λ} ≤ f , which holds on E.

Remark 36. Let f(x) = (x − µ)2 to obtain Chebyshev’s Inequality.
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In particular if g ∈ Lp, p < ∞ and λ > 0 then µ(|g| ≥ λ) = µ(|g|p ≥ λp) ≤ µ(|g|p)
λp ≤ ∞

this gives the tail estimates as λ → ∞.

Definition 5.3 (Convex Function)
Let I ⊆ R be an interval. Then we say a map c : I → R is convex if for all x, y ∈ I
and t ∈ [0, 1], we have c(tx + (1 − t)y) ≤ tc(x) + (1 − t)c(y). Equivalently, for all
x < t < y and x, y ∈ I , we have c(t)−c(x)

t−x ≤ c(y)−c(t)
y−t .

Thus a convex function is continuous on the interior of the interval and so is Borel meas-
urable.

Lemma 5.1
Let I ⊆ R be an interval and c : I → R, and let m ∈ the interior of I . If c is convex
on I , ∃a, b s.t. c(x) ≥ ax + b ∀x ∈ I , and c(m) = am + b.

Proof. Define a = sup
{

c(m)−c(x)
m−x : x < m, x ∈ I

}
. This exists in R by the second

definition of convexity. Let x, y ∈ I , and y > m > x. Then c(m)−c(x)
m−x ≤ a ≤ c(y)−c(m)

y−m ,
so c(y) ≥ ay − am + c(m) = ay + b where we define b = c(m) − am. Similarly, for
x, we have c(x) ≥ ax + b.

Theorem 5.1 (Jensen’s inequality)
Let X be a integrablea r.v. taking values in an interval I ⊆ R. Let c : I → R be a
convex function. Then E [c(X)] well-defined and

c(E [X]) ≤ E [c(X)] .

aE [|X|] < ∞

Proof. If X is a constant a.s., then done.

Otherwise, then m = E[X] ∈ int aI

Using the previous lemma, ∃a, b s.t. c(X) ≥ aX+b. In particular, (c(X))− ≤ |a||X|+
|b|b. Hence, E [c−(X)] ≤ |a|E [|X|] + |b| < ∞, and E [c(X)] = E

[
c+(X)

]
− E [c−(X)]

is well-defined in (−∞, ∞].

Integrating c(X) ≥ aX + bc,

E [c(X)] ≥ aE [X] + bd = am + b = c(m) = c(E [X])
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aInterior of
bf ≥ g gives −f ≤ −g so f− ≤ g− ≤ |g|.
cIf E[c(X)] = ∞ done.
dExpectation of Ω is 1, this is why we need a probability measure.

Example 5.1
(Ω, F ,P) and 1 ≤ p ≤ ∞. If X ∈ L∞(P) then X ∈ Lp(P) as ‖X‖p ≤ ‖X‖∞ as P(Ω)
finite.

Example 5.2
If 1 ≤ p < q < ∞, c(x) = |x|

q
p is a convex function. If X ∈ Lq(P), we then have

‖X‖p = E [|Xp|]
1
p = c(E [|X|p])

1
q ≤ aE [c(|X|p)]

1
q = ‖X‖q

So X ∈ Lq =⇒ X ∈ Lp so Lq(P) ⊆ Lp(P) for all 1 ≤ p ≤ q ≤ ∞.
aBy Jensen

Theorem 5.2 (Hölder’s Inequality)
Let f, g be measurable functions on (E, E , µ). If p, q are conjugate, so 1

p + 1
q = 1 and

1 ≤ p ≤ q ≤ ∞, we have

µ(|fg|) =
∫

E
|f(x)g(x)| dµ ≤ ‖f‖p · ‖g‖q

Remark 37. For p = q = 2, this is exactly the Cauchy–Schwarz inequality on L2 (Simpler
proof on Sheet 3 by considering

∫
(f + g)2 ≥ 0.).

Proof. The cases p = 1 or p = ∞ are obvious. We can assume f ∈ Lp and g ∈ Lq

wlog since the right hand side would otherwise be infinite. We can also assume f
is not equal to zero a.e., otherwise this reduces to 0 ≤ 0.

Hence, ‖f‖p > 0. Then, we can divide both sides by ‖f‖p and then assume ‖f‖p = 1.

Define a prob measure P on E by P(A) =
∫

A |f |p dµ (P has prob density |f |p wrt µ).
Note, for h ≥ 0

∫
h dP =

∫
h|f |p dµ.

The

µ(|fg|) = µ(|fg|1|f |>0)
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=
∫

|f ||g|1|f |>0 dµ

=
∫ |f |p

|f |p−1 |g|1|f |>0 dµ

=
∫ |g|

|f |p−1 1|f |>0|f |p dµ

=
∫ |g|

|f |p−1 1|f |>0 dP

= E
[ |g|

|f |p−1 1|f |>0

]

≤ E
[( |g|

|f |p−1 1|f |>0

)q] 1
q a

= E
[ |g|q

|f |p
1|f |>0

] 1
q

=
(∫ |g|q

|f |p
1|f |>0 dP

) 1
q

=
(∫

|g|q1|f |>0 dµ

) 1
q

≤
(∫

|g|q dµ

) 1
q

= ‖g‖q

aProven earlier by Jensen’s that ‖X‖p ≤ ‖X‖q for 1 ≤ p ≤ q.

Theorem 5.3 (Minkowski’s inequality)
Let f, g : (E, E , µ) → R be measurable functions. Then for all 1 ≤ p ≤ ∞, we have
‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The results for p = 1, ∞ are clear. Suppose 1 < p < ∞. We can assume wlog
that f, g ∈ Lp.

We can integrate the pointwise inequality |f + g|p ≤ 2p(|f |p + |g|p) to deduce that
µ(|f + g|p) ≤ 2p[µ(|f |p) + µ(|g|p)] < ∞ so f + g ∈ Lp. We assume that 0 < ‖f + g‖p,
otherwise the result is trivial. Now, using Hölder’s inequality with q conjugate to
p,

‖f + g‖p
p =

∫
|f + g|p dµ =

∫
|f + g|p−1|f + g| dµ
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≤
∫

|f + g|p−1|f | dµ +
∫

|f + g|p−1|g| dµ

≤ a‖f‖p

∥∥∥(f + g)p−1
∥∥∥

q
+ ‖g‖p

∥∥∥(f + g)p−1
∥∥∥

q

≤
(∫

|f + g|q(p−1) dµ

) 1
q (

‖f‖p + ‖g‖p

)
≤
(∫

|f + g|p dµ

) 1
q (

‖f‖p + ‖g‖p

)
≤ ‖f + g‖

p
q
p

(
‖f‖p + ‖g‖p

)
Dividing both sides by ‖f + g‖

p
q
p noting p

q = p − 1, we obtain ‖f + g‖p ≤ ‖f‖p +
‖g‖p.
aBy Holder’s Inequality

So the Lp spaces are indeed normed spaces.

§5.2 Banach spaces

Definition 5.4 (Banach Space)
A Banach space is a complete normed vector space.

Theorem 5.4 (Lp is a Banach space)
Let 1 ≤ p ≤ ∞, and let fn ∈ Lp be a Cauchy sequence, so ∀ε > 0 ∃N s.t. ∀m, n ≥ N ,
we have ‖fm − fn‖p < ε. Then ∃f ∈ Lp s.t. fn → f in Lp, so ‖fn − f‖p → 0 as
n → ∞.

Proof. For this proof, we assume p < ∞; the other case is already proven in IB
Analysis and Topology.

Since fn is Cauchy, using ε = 2−k we extract a subsequence fNk
of Lp functions s.t.

S =
∞∑

k=1

∥∥∥fNk+1 − fNk

∥∥∥
p

≤
∞∑

k=1
2−k < ∞

By Minkowski’s inequality, for any K, we have∥∥∥∥∥
K∑

k=1

∣∣∣fNk+1 − fNk

∣∣∣∥∥∥∥∥
p

≤
K∑

k=1

∥∥∥fNk+1 − fNk

∥∥∥
p

≤ S < ∞.
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So
∫ ∣∣∣∑K

k=1

∣∣∣fNk+1 − fNk

∣∣∣∣∣∣p dµ ≤ Sp < ∞.

By the monotone convergence theorem applied to
∣∣∣∑K

k=1

∣∣∣fNk+1 − fNk

∣∣∣∣∣∣p which in-
creases to

∣∣∣∑∞
k=1

∣∣∣fNk+1 − fNk

∣∣∣∣∣∣p, we find∥∥∥∥∥
∞∑

k=1

∣∣∣fNk+1 − fNk

∣∣∣∥∥∥∥∥
p

≤ S < ∞

Since the integral is finite, we see that∑∞
k=1

∣∣∣fNk+1 − fNk

∣∣∣ is finite µ-a.e.. Let A be
the set where this sum is finite, then µ(Ac) = 0. For any x ∈ A, (fNk

(x)) is Cauchy
as sum finite, and since R complete it converges. Define,

f(x) =
{

limk→∞ fNk
(x) x ∈ A

0 x ∈ Ac

so fNk
→ f as k → ∞ µ-a.e. and f measurable as the limit of measurable fcns.

Now, by Fatou’s lemma,

‖fn − f‖p
p = µ(|fn − f |p)

= µ(lim
k

|fn − fNk
|p)

= µ(lim inf
k

|fn − fNk
|p)

≤ lim inf
k

µ(|fn − fNk
|p)

≤ εp ∀n ≥ N a.

Since the fn are Cauchy,

‖f‖p ≤ ‖f − fN ‖p︸ ︷︷ ︸
≤ε

+ ‖fN ‖p︸ ︷︷ ︸
<∞

< ∞

so f ∈ Lp and so fn → f in Lp.
aThis is the N defined in the statement of the theorem.

Remark 38. If V is any of the spaces

C([0, 1]); {f simple}; {f a finite linear combination of indicators of intervals}

then V is dense in Lp((0, 1), B, λ). So the completion (V, ‖ · ‖1) is exactly L1(λ) (Proof
on Sheet 3, first prove for finite linear combinations, use monotone class theorem, ap-
proximate continuous fcns by indicators of intervals so done).
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§5.3 Hilbert spaces

Definition 5.5 (Inner Product)
A symmetric bilinear form 〈 · , · 〉 : V × V → R on a real vector space V is called an
inner product if 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇐⇒ v = 0.
In this case, we can define a norma ‖v‖ =

√
〈v, v〉.

aCauchy-Schwarz gives triangle inequality

Definition 5.6 (Hilbert Space)
If (V, 〈 · , · 〉) is complete, we say that it is a Hilbert space.

Corollary 5.1
The space L2 is a Hilbert space for the inner product 〈f, g〉 =

∫
E fg dµ.

Example 5.3
An analog of the Pythagorean theorem holds. Let f, g ∈ L2, then ‖f + g‖2

2 = ‖f‖2
2 +

2 〈f, g〉 + ‖g‖2
2.

Example 5.4
The parallelogram identity holds: ‖f + g‖2

2 + ‖f − g‖2
2 = 2

(
‖f‖2

2 + ‖g‖2
2

)

Definition 5.7 (Orthogonal)
We say f is orthogonal to g if 〈f, g〉 = 0.

Remark 39. f and g are orthogonal iff ‖f + g‖2
2 = ‖f‖2

2 + ‖g‖2
2.

For centred (mean zero) r.v.s X, Y , we have 〈X, Y 〉 = E [XY ] = E[(X − E[X])(Y −
E[Y ])] = Cov X, Y which vanishes when X and Y are orthogonal.

Definition 5.8 (Orthogonal Complement)
Let V ⊆ L2(µ). We define its orthogonal complement to be

V ⊥ =
{

f ∈ L2(µ) : 〈f, g〉 = 0 ∀g ∈ V
}
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Definition 5.9 (Closed Set)
We say that a subset V of L2 is closed if for any sequence fn ∈ V that converges in
L2, its limit f coincides a.e. with some v ∈ V .

Theorem 5.5 (Orthogonal Projection)
Let V be a closed linear subspace of L2(µ). Then ∀f ∈ L2, ∃ an orthogonal decom-
position f = v + u where v ∈ V and u ∈ V ⊥.
Moreover, ‖f − v‖2 ≤ ‖f − g‖2 ∀g ∈ V with equality iff v = g a.e..

Definition 5.10 (Projection)
We call v the projection of f onto V .

Proof. In this proof, we use p = 2 for all norms. We define d(f, V ) = infg∈V ‖g − f‖,
and let gn ∈ V be a sequence of functions s.t. ‖gn − f‖ → d(f, V ).
By the parallelogram law,

2‖f − gn‖2 + 2‖f − gm‖2 = ‖2f − (gn + gm)‖2 + ‖gn − gm‖2

= 4

∥∥∥∥∥∥∥∥f − gn + gm

2︸ ︷︷ ︸
∈V

∥∥∥∥∥∥∥∥
2

+ ‖gn − gm‖2

≥ 4d(f, V )2 + ‖gn − gm‖2

Thus limn,m→∞ ‖gn − gm‖2 → 0, i.e. gn is Cauchy in L2, so by completeness, it
converges to some v ∈ L2. Since V is closed, v ∈ V . In particular, d(f, V ) =
infg∈V ‖g − f‖ = ‖v − f‖.

Note that d(f, V )2 ≤ F (t) = ‖f − (v + th)‖2 = d(f, V )2 − 2t 〈f − v, h〉 + t2‖h‖2

where t ∈ R and h ∈ V . Letting t ↓ 0 and t ↑ 0, we obtain 〈f − v, h〉 = 0 for all h.
Defining f − v = u, we have f = u + v and u ∈ V ⊥ since h was arbitrary.

For any g ∈ V , f − g = f − v︸ ︷︷ ︸
∈V ⊥

+ v − g︸ ︷︷ ︸
∈V

. So ‖f − g‖2 = ‖f − v‖2 + ‖v − g‖2 hence

‖f − g‖ ≥ ‖f − v‖ with equality iff ‖v − g‖ = 0, i.e. v = g a.e..
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§5.4 Conditional Expectation

If G a sub-σ algebra of F (i.e. G ⊆ F), then L2(Ω, G,P) is a closed subspace of
L2(Ω, F ,P).

Definition 5.11 (Conditional Expectation)
For X ∈ L2(Ω, F ,P) s.t. X measurable wrt G, ‖X − Y ‖2 ≥ ‖X − E[X | G]‖2 ∀Y that
are G measurable.
Thea conditional expectation of X given G, E[X | G] is defined as the orthogonal
projection of X on L2(Ω, G,P).
aThis is actually only a variant of the conditional expectation.

Question
How to define E[X | G] if X ∈ L1(Ω, F ,P), see Advanced Probability.

Example 5.5
Let (Gi)i∈I be a countable family of disjoint events whose union is Ω and set G =
σ(Gi : i ∈ I). Let X be integrable. Then the conditional expectation of X given G is
given by:

E[X | Gi] = E[X1Gi ]
P(Gi)

∀i ∈ I.

Let Y =
∑

i E[X | Gi]1Gi (i.e. if ω ∈ Gi, Y (ω) = E[X | Gi]). Check that Y is G-
measurable; Y ∈ L2(Ω, G,P); and that Y is “the” orthogonal projection of X onto
L2(Ω, G,P) if X ∈ L2(Ω, F ,P).

§5.5 Lp Convergence and Uniform Integrability

For (Ω, F ,P), what are the implications between convergence: a.s., in Lp for 1 ≤ p < ∞,
in P and in distribution.

Let fn = n1(0,1/n) on ((0, 1), B, λ). fn → 0 a.s. but E[|fn|] = E[fn] = 1 ∀n so a.s. 6=⇒ Lp

convergence.

P(|Xn − X| > ε) ≤ E|Xn−X|p
εp by Markov’s Inequality, so convergence in Lp for 1 ≤ p <

∞ =⇒ convergence in P.
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Theorem 5.6 (Dominated Convergence Theorem)
Let Xn be r.v.s on (Ω, F ,P) s.t. |Xn| ≤ Y for integrable r.v. Y and they converge in
P to X . Then Xn → X in L1(P), i.e. E[|Xn − X|] → 0.

Question
What is the “minimum condition” on (Xn) under which Xn → X in P implies
Xn → X in L1(P).

Answer
Uniformly Integrable

For X ∈ L1(P), then as δ → 0,

IX(δ) = sup {E [|X|1A] : P (A) ≤ δ, A ∈ F} → 0

If not, ∃ε > 0 and An ∈ F s.t. P (An) ≤ 2−n but E [|X|1An ] ≥ ε. Since∑n P (An) < ∞,
by the first Borel–Cantelli lemma, we have P

(⋂
n

⋃
m≥n Am

)
= 0. But E [|X|1An ] ≤

E
[
|X|1⋃

m≥n
Am

]
. Note that 1⋃

m≥n
Am

→ 1⋂
n

⋃
m≥n

An
= 0 a.s., so E

[
|X|1⋃

m≥n
Am

]
→

E
[
|X|1⋂

n

⋃
m≥n

]
= 0 by DCT E.

Definition 5.12 (Uniformly Integrable)
For a collection X ⊆ L1(P) of r.v.s, we say X is uniformly integrable (UI) if it is
bounded in L1(P)a, and

IX (δ) = sup {E [|X|1A] : P (A) ≤ δ, A ∈ F , X ∈ X } → 0 as δ → 0.

aI.e. supX∈X ‖X‖1 = supX∈X E[|X|] = IX (1) < ∞.

Remark 40. 1. Any single integrable r.v. is UI. Also, true for any finite collection
of integrable r.v.s. Also, if X =

{
X : X a r.v. s.t. |X| ≤ Y for some Y ∈ L1} as

supX∈X E[|X|1A] ≤ E[Y 1A] implies IX (δ) ≤ IY (δ) → 0 as δ → 0.

2. If X is bounded in Lp(P) for p > 1, then by Hölder’s inequality,

E [|X|1A] ≤ ‖X‖p︸ ︷︷ ︸
bounded

·P (A)
1
q︸ ︷︷ ︸

≤δ
1
q →0

Hence, X is UI.
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3. Note that Xn = n1[0, 1
n ] for the Lebesgue measure µ on [0, 1] is bounded in L1(P)

but not uniformly integrable.

Lemma 5.2
X ⊆ L1(P) is UI ⇐⇒ supX∈X E

[
|X|1{|X|>K}

]
→ 0 as K → ∞.

Proof. ( =⇒ ): Applying Markov’s inequality, as K → ∞,

P (|X| > K) ≤ E [|X|]
K

= E [|X|1Ω]
K

≤ IX (1)
K

→ 0

Using the uniform integrability property using A = {|X| > K}, we obtain the re-
quired limit.

(⇐=):
E [|X|] = E

[
|X|

(
1{|X|≤K} + 1{|X|>K}

)]
≤ K + ε

2
for sufficiently large K. So X is bounded in L1(P) as required. Then for A s.t.
P (A) ≤ δ,

E
[
|X|1A

(
1{|X|≤K} + 1{|X|>K}

)]
≤ KP (A) + E

[
|X|1{|X|>K}

]
≤ Kδ + ε

2
< ε

for sufficiently small δ.

Theorem 5.7
Let Xn, X be r.v.s on (Ω, F ,P). Then the following are equivalent.

1. Xn, X ∈ L1(P) and Xn → X in L1(P).

2. {Xn : n ∈ N} is uniformly integrable, and Xn → X in P.

Proof. (1) =⇒ (2): Using Markov’s inequality,

P (|Xn − X| > ε) ≤ E [|Xn − X|]
ε

→ 0

so Xn → X in P.

Choose N s.t. E[|Xn − X|] < ε
2 ∀n ≥ N . {X1, . . . , XN−1, X} is finite so UI. So

Choose δ s.t. E[|X|1A] ≤ ε
2 and E[|Xn|1A] ≤ ε ∀n = 1, . . . , N − 1 when P(A) < δ.

E [|Xn|1A] ≤ E [|Xn − X|1A] + E [|X|1A] ≤ ε

2
+ ε

2
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So X is UI.

(2) =⇒ (1): Xn → X in P, so take a subsequence nk s.t. Xnk
→ X a.s.. Then,

E [|X|] = E
[
lim inf

k
|Xnk

|
]

≤ a lim inf
k

E [|Xnk
|] ≤ IX (1) < b∞,

so X ∈ L1(P).

Next, we define truncated r.v.s XK
n = max(−K, min(K, Xn)) and XK =

max(−K, min(K, X)). Then XK
n → XK in P (as P(|XK

n −XK | > ε) ≤ P(|Xn −X| >
ε))c. And |XK

n | ≤ K ∀n so by BCT, XK
n → XK in L1. Now,

E [|Xn − X|] ≤ E
[∣∣∣Xn − XK

n

∣∣∣]+ E
[∣∣∣XK

n − XK
∣∣∣]+ E

[∣∣∣XK − X
∣∣∣]

= E
[
|Xn|1{|Xn|>k}

]
+ E

[∣∣∣XK
n − XK

∣∣∣]+ E
[
|X|1{|X|>K}

]
< ε

by choosing sufficiently large K (by UI) and n.
aFatou’s lemma
bAs X is UI, hence L1 bounded.
cAside: If Xn → X in P and f cts, then f(Xn) → f(X) in P.
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§6 Fourier transforms

§6.1 Fourier transforms

In this section, we will write Lp = Lp(Rd) for the space of complex valued Borel meas-
urable fcns on Rd, i.e. f : Rd → C s.t. ‖f‖p = (

∫
Rd |f(x)|p dµ(x))

1
p < ∞ for 1 ≤ p < ∞.

Remark 41. For g measurable s.t.
∫

|g| < ∞, define
∫

g(x) dµ(x) =
∫

Re(g(x)) dµ(x) +
i
∫

Im(g(x)) dµ(x).

For f, g ∈ L2, 〈f, g〉 =
∫

f(x)g(x) dµ(x) is an inner product on L2(µ).

For any y ∈ Rd, ∫
f(x − y) dx =

∫
f(y − x) dx =

∫
f(x) dx

=
∫

f(−x) dx .

This is by the translation invariance and x 7→ −x symmetry of λ, proved in Sheet 3. Also,
for a ∈ R with a 6= 0,

∫
f(ax) dx = 1

ad

∫
f(x) dx.

Definition 6.1 (Fourier Transform)
Let f ∈ L1(Rd). We define the Fourier transform f̂ by

f̂(u) =
∫
Rd

f(x)ei〈u,x〉 dx

where u ∈ Rd and 〈u, x〉 =
∑d

i=1 uixi.

Remark 42. Note that
∣∣∣f̂(u)

∣∣∣ ≤ ‖f‖1 ∀u ∈ Rd, i.e. f̂ ∈ L∞.

Also, if un → u, then ei〈un,x〉 → ei〈u,x〉 so f(x)ei〈un,x〉 → f(x)ei〈u,x〉; |f(x)ei〈un,x〉| ≤ |f(x)|
and f ∈ L1. By the DCT f̂(un) → f̂(u). Moreover, lim‖u‖→∞ f̂(u) = 0 (Riemann-
LebesgueLemma, Sheet 3). Thus f̂ ∈ C0(Rd) = {f bounded cts and vanishing at ± ∞}.

The map is 1 − 1 (but not onto), its injective but not surjective.

Definition 6.2 (Fourier Transform)
Let µ be a finite Borel measure on Rd. We define the Fourier transform of the meas-
ure for u ∈ Rd by

µ̂(u) =
∫
Rd

ei〈u,x〉 dµ(x)
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Note that |µ̂(u)| ≤ µ(Rd), and µ̂ a bounded cts fcn on Rd. If µ has a density f (wrt λ),
µ̂ =

∫
Rd ei〈u,x〉f(x) dx = f̂ .

Definition 6.3 (Characteristic Function)
Let X be an Rd-valued r.v.. The characteristic function (c.f.) φX of X is the Fourier
transform of its law µX = P ◦ X−1. So,

φX(u) = µ̂X(u) =
∫

ei〈u,x〉 dµX(x)︸ ︷︷ ︸
dP◦X−1(x)

a =
∫

ei〈u,x〉 dP = E
[
ei〈u,X〉

]
.

aNote that ν ◦ f−1(g) = ν(f ◦ g).

In particular if X has pdf f , then φX(u) = f̂(u).

Definition 6.4 (Fourier Inversion Formula)
Let f ∈ L1(Rd) s.t. f̂ ∈ L1(Rd). Then we say that the Fourier inversion formula
holds for f if

f(x) = 1
(2π)d

∫
Rd

f̂(u)e−i〈u,x〉 du

a.e. in Rd.

Remark 43. The RHS is cts by DCT, so for f cts the equality is everywhere.

Remark 44. The map from L1 → C0 by f 7→ f̂ is 1 − 1 (for f, g ∈ L1 with f̂ = ĝ, then
f − g ∈ L1 and f̂ − g = f̂ − ĝ = 0. So by Fourier Inversion f − g = 0 a.e.)

§6.2 Convolutions

A key concept in Fourier analysis is convolutions.

Definition 6.5 (Convolution)
Let f ∈ Lp(Rd), 1 ≤ p < ∞ and ν be a probability measure on Rd. We define their
convolution f ∗ ν by

(f ∗ ν)(x) =
{∫

Rd f(x − y) dν(y) if integral exists;
0 else.

Remark 45. If 1 ≤ p < ∞, by Jensen’s inequality,∫
Rd

|f ∗ ν(x)|p dx ≤
∫
Rd

(∫
Rd

|f(x − y)| dν(y)
)p

dx
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≤
∫
Rd

∫
Rd

|f(x − y)|p dν(y) dx as p ≥ 1

=
∫
Rd

∫
Rd

|f(x − y)|p dx dν(y)

=
∫
Rd

∫
Rd

|f(x)|p dx dν(y) as λ translation invariant

= ‖f‖p
p < ∞ as ν a prob measure.

Hence f ∗v is defined a.e., and ‖f ∗ v‖p ≤ ‖f‖p < ∞. When ν has pdf g ∈ L19, f ∗v(x) =∫
f(x − y)g(y) dy = f ∗ g(x).

In the case where ν has a density g with respect to the Lebesgue measure, we write
f ∗ g = f ∗ ν.

Definition 6.6 (Convolution)
For probability measures µ, ν onRd, their convolution µ∗ν is a probability measure
on Rd given by the law of X + Y where X, Y are independent r.v.s with laws µ and
ν, so

(µ ∗ ν)(A) = P (X + Y ∈ A)

=
∫
Rd×Rd

1A(x + y) d(µ ⊗ ν)(x, y)

=
∫
Rd

∫
Rd

1A(x + y) dν(y) dµ(x)

Ifµ has density f ∈ L1 wrt the Lebesguemeasure, µ∗ν has density f ∗ν wrt the Lebesgue
measure. Indeed,

(µ ∗ ν)(A) =
∫
Rd

∫
Rd

1A(x + y)f(x) dx dν(y)

=
∫
Rd

∫
Rd

1A(x)f(x − y) dx dν(y)

=
∫
Rd

1A(x)
∫
Rd

f(x − y) dν(y) dx

=
∫
Rd

1A(x)(f ∗ ν)(x) dx

Proposition 6.1
f̂ ∗ ν(u) = f̂(u)ν̂(u) for all f ∈ L1 and ν a prob measure.

9wrt Lebesgue measure
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Proposition 6.2
µ̂ ∗ ν(u) = E

[
ei〈u,X+Y 〉

]
= E

[
ei〈u,X〉ei〈u,Y 〉

]
= µ̂(u)ν̂(u) for all µ, ν prob measures.

§6.3 Fourier transforms of Gaussians

Definition 6.7 (Normal Distribution)
The normal distribution N(0, t) is given by the probability density function

gt(x) = 1√
2πt

e− x2
2t

If φZ is the characteristic function of Z ∼ N(0, 1), i.e. φZ(u) =
∫ 1√

2π
e−z2/2eiuz dz then

by a previous thm, φz is differentiable and can use DUTIS.

d
du

φZ(u) = 1√
2π

∫ d
du

(
e−z2/2eiuz

)
dz

= 1√
2π

∫
ize−z2/2eiuz dz

= i√
2π

∫
eiuz︸︷︷︸

v

ze− z2
2︸ ︷︷ ︸

w′

dz

= i√
2π

∫
iueiuze− z2

2 dz

= −uφZ(u)

Hence,
d

du

(
e

u2
2 φZ(u)

)
= ue

u2
2 φZ(u) − e

u2
2 uφZ(u) = 0

In particular, φZ(u) = φZ(0)e− u2
2 = e− u2

2 . In other words, ĝ1(u) =
√

2πg1(u).

In Rd, consider a Gaussian r.v. Z = (Z1, . . . , Zd) with iid entries N(0, 1). Then, the joint
pdf (wrt λd) of

√
tZ is

gt(x) =
d∏

j=1

1√
2πt

e−
x2

j
2t = (2πt)− d

2 e− ‖x‖2
2t

The Fourier transform of gt is

ĝt(u) = E
[
ei〈u,

√
tZ〉] = E

 d∏
j=1

eiuj

√
tzj

 =
d∏

j=1
E
[
eiuj

√
tzj

]
︸ ︷︷ ︸

φZi
(
√

tui)

=
d∏

j=1
e−u2

j
t
2 = e− ‖u‖2t

2
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which implies that in general, ĝt(u) = (2π)
d
2

t
d
2

t
d
2

(2π)
d
2

e− ‖u‖2t
2 = (2π)

d
2 t− d

2 g 1
t
(u). Taking the

Fourier transformwith respect to u, ˆ̂gt = (2π)
d
2 t− d

2 ĝ 1
t
(u) = (2π)dgt. Since gt(−x) = gt(x)

and the Lebesgue measure is translation invariant, we have

gt(x) = 1
(2π)d

ˆ̂gt(x) = 1
(2π)d

∫
Rd

e−i〈u,x〉ĝt(u) du

so the Fourier inversion theorem holds for gt.

Definition 6.8 (Gaussian Convolution)
We say that a function on Rd is a Gaussian convolution if it is of the form

f ∗ gt(x) =
∫
Rd

f(x − y)gt(y) dy

where x ∈ Rd, t > 0, f ∈ L1(Rd).

1. f ∗ gt ∈ L1 as f ∈ L1 (proved earlier) and ‖f ∗ gt‖1 ≤ ‖f‖1 < ∞.

2. f ∗ gt is continuous on Rd by noting f ∗ gt(x) =
∫
Rd f(y)gt(x − y) dy by translation

invariance, then using DCT noting g bounded as cts.

3. f ∗ gt is bdd.

4. f̂ ∗ gt(u) = f̂(u)ĝt(u) = f̂(u)e− ‖u‖2t
2 .

5. f̂ ∗ gt is bdd cts as f ∗ gt ∈ L1.

6.
∥∥∥f̂ ∗ gt

∥∥∥ ≤ ct

∥∥∥f̂∥∥∥
∞

≤ ct

∥∥∥f̂∥∥∥
1
.

7. For µ a prob measure and any t > 0, µ ∗ gt is a Gaussian convolution. As, gt =
gt/2 ∗ gt/2 as gt is the density of a N(0, t) r.v.. Then µ ∗ gt = (µ ∗ gt/2)

L1

∗gt/2.

Lemma 6.1
The Fourier inversion theorem holds for all Gaussian convolutions.

Proof. Let f ∈ L1 and t > 0. We can use the Fourier inversion theorem for gt(y) to
see that

(2π)df ∗ gt(x) = (2π)d
∫
Rd

f(x − y)gt(y) dy

=
∫
Rd

f(x − y)
∫
Rd

e−i〈u,y〉ĝt(u) du dy
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=
∫
Rd

e−i〈u,x〉
∫
Rd

f(x − y)ei〈u,x−y〉 dy ĝt(u) du

=
∫
Rd

e−i〈u,x〉
∫
Rd

f(z)ei〈u,z〉 dz ĝt(u) du

=
∫
Rd

e−i〈u,x〉f̂(u)ĝt(u) du

=
∫
Rd

e−i〈u,x〉f̂ ∗ gt(u) du

Lemma 6.2 (Gaussian convolutions are dense in Lp)
Let f ∈ Lp(Rd) where 1 ≤ p < ∞. Then ‖f ∗ gt − f‖p → 0 as t → 0.

Proof. One can easily show that the space Cc(Rd) of continuous functions of com-
pact support is dense in Lp. Hence, given ε > 0, ∃h ∈ Cc(Rd) s.t. ‖f − h‖p < ε

3 .
Then by linearity of convolution,

‖f ∗ gt − h ∗ gt‖p = ‖(f − h) ∗ gt‖p ≤ ‖f − h‖p <
ε

3

So by Minkowski’s inequality,

‖f ∗ gt − f‖p ≤ ‖f ∗ gt − h ∗ gt‖p

≤ε/3

+ ‖h − f‖p

≤ε/3

+‖h ∗ gt − h‖p ≤ 2ε

3
+ ‖h ∗ gt − h‖p

so it suffices to prove the result for f = h ∈ Cc(Rd). We define a new map

e(y) =
∫
Rd

|h(x − y) − h(x)|p dx

Since h is bdd (cts on compact support) and supported on [−M, M ] say, for some
M > 0. As y → 0, |h(x−y)−h(x)|p → 0 as h cts. Also for |y| < 1, |h(x−y)−h(x)|p ≤
2p‖h(x)‖p

∞1|x|≤M+1, with the RHS being integrable. Hence by DCT, e(y) → 0 as
y → 0.

Hence, by Jensen’s inequality,

‖h ∗ gt − h‖p
p =

∫
Rd

∣∣∣∣∫
Rd

h(x − y)gt(y) dy − h(x)
∣∣∣∣p dx

=
∫
Rd

∣∣∣∣∫
Rd

(h(x − y) − h(x))gt(y) dy

∣∣∣∣p dx

≤
∫
Rd

∫
Rd

|h(x − y) − h(x)|p dx gt(y)a dy
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=
∫
Rd

e(y)gt(y) dy

=
∫
Rd

e(y) 1
td/2 g1

(
y√
t

)
b dy

=
∫
Rd

e(
√

tz)
→e(0)=0 as t→0

g1(z) dz

→ 0 by DCT.

agt the measure for our expectation in Jensen’s so unaffected.
bNote that gt(u) = 1

td/2 g1

(
u√

t

)

Theorem 6.1 (Fourier Inversion)
Let f ∈ L1(Rd) be s.t. f̂ ∈ L1(Rd). Then a.e. in Rd,

f(x) = 1
(2π)d

∫
Rd

e−i〈u,x〉f̂(u) du

Remark 46. This proves that the Fourier transform is injective; f̂ = ĝ implies f̂ − g = 0
so by Fourier inversion, f = g almost everywhere. The identity holds everywhere on
Rd for the (unique) continuous representative f in its equivalence class.

Proof. Consider f ∗ gt and

ft(x) = 1
(2π)d

∫
Rd

e−i〈u,x〉f̂(u) e
−|u|2t

2

ĝt(u)
du

As FI holds for f ∗ gt, f ∗ gt = ft.

So, ‖ft − f‖1
t→0−→ 0 by density of Gaussian convolutions and as f ∈ L1. So ft → f

in P and thus ∃ a subsequence s.t. ftn → f a.e.

Also, e−i〈u,x〉f̂(u)e
−|u|2t

2 is bounded by
∣∣∣f̂(u)

∣∣∣, which is integrable, and →
e−i〈u,x〉f̂(u) as t → 0. So by DCT, ft(x) → 1

(2π)d

∫
e−i〈u,x〉f̂(u) du as t → 0 a.e.

Hence f = 1
(2π)d

∫
e−i〈u,x〉f̂(u) du a.e. as ft converges to it a.e. and ftn → f .

Theorem 6.2 (Plancherel)
Let f ∈ L1(Rd) ∩ L2(Rd). Then ‖f‖2 = (2π)− d

2

∥∥∥f̂∥∥∥
2
.
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Remark 47. By the Pythagorean identity, 〈f, g〉 = (2π)−d
〈
f̂ , ĝ

〉
.

Proof. Initially, we assume f, f̂ ∈ L1. In this case, f, f̂ ∈ L∞, and (x, u) 7→ f(x)f̂(u)
is integrable for the product Lebesgue measure dx ⊗ du on Rd × Rd, so Fubini’s
theorem for bounded functions applies.

(2π)d‖f‖2
2 = (2π)d

∫
Rd

f(x)f(x) dx

=
∫
Rd

(∫
Rd

e−i〈u,x〉f̂(u) du

)
f(x) dx < ∞ (and f ∈ L2)

=
∫
Rd

f̂(u)
∫
Rd

ei〈u,x〉f(x) dx du

=
∫
Rd

f̂(u)f̂(u) du

=
∥∥∥f̂∥∥∥2

2

Now, let f ∈ L1 ∩ L2. For t > 0, take ft = f ∗ gt −→
t→0

f in L2 and so ‖ft‖2 −→
t→0

‖f‖2

continuity of the norm. Also, f̂t(u) = f̂(u)ĝt(u) = f̂(u)e− |u|2t
2 . So

∣∣∣f̂t(u)
∣∣∣ ↑
∣∣∣f̂(u)

∣∣∣ as
t → 0. Thus

∥∥∥f̂t(u)
∥∥∥2

2
=
∫

|f̂t(u)|2 du −→
t→0

∫
|f̂(u)|2 du =

∥∥∥f̂∥∥∥2

2
by MCT.

But, ft = f ∗gt ∈ L1, and f̂t ∈ L1. So by the first part of the proof, (2π)d‖ft‖2
2 =

∥∥∥f̂t

∥∥∥2

2
.

Letting t → 0, we get (2π)d‖f‖2
2 =

∥∥∥f̂∥∥∥2

2
.

Remark 48. Since L1 ∩ L2 is dense in L2, we can extend the linear operator F0(f) =
(2π)− d

2 f̂ to L2 by continuity to a linear isometry F : L2 → L2 known as the Fourier–
Plancherel transform. One can show that F is surjective with inverse F −1 : L2 → L2.

§6.4 Characteristic fcns, Weak Convergence and the CLT

Definition 6.9 (Characteristic Function)
For a r.v. X , its characteristic function is

φX(t) = E[eitX ] = µ̂X =
∫

ei〈t,x〉 dµX(x)

Example 6.1
Consider the Dirac measure δ0 on R, so δ̂0(u) =

∫
R eiux dδ0(x) = 1. But the inverse
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Fourier transform would be 1
2π

∫
R eiux du which is not a Lebesgue integrable func-

tion.

To circumvent this, we test ‘µ’ on nice test fcns f .

Remark 49. 2 p.m.s µ, ν onRd coincide ⇐⇒
∫

f dµ =
∫

f dν ∀f : Rd → R bdd cts10. In
fact, enough to have condition holding ∀f ∈ C∞

c (space of infinitely differentiable fcns
with compact support).

Aside

(µ : f 7→ µ(f) mapping from C∞
c → R is a linear, cts (on Lf topology), hence µ is

“Schwartz distribution”).

Definition 6.10 (Weak Convergence)
Let (µn), µ be Borel prob measures on Rd. Then µn converges to µ weakly if∫

f dµn →
∫

f dµ as n → ∞ for all f : Rd → R bdd cts.

Remark 50.

1. For a sequence of r.v.s Xn and X another r.v., Xn → X weakly if µXn → µX weakly.

2. A sequence of prob measures, µn, can have at most one weak limit by previous
remark (the one about 2 p.m.s. coinciding).

3. If Xn → X weakly, and h : Rd → Rk cts, then h(Xn) → h(X) weakly (as r.v. in
Rk). (Continuous Mapping Theorem) (from definition as f ◦ h bdd cts if f bdd
cts).

4. Suffices to check condition in definition for all f ∈ C∞
c . (“tightness” argument, i.e.

∃K compact s.t. µn(Kc) < ε ∀n if µn → µ weakly. Sheet 4)

5. When d = 1, this is equivalent to Xn → X in distribution (i.e., FXn(x) → FX(x) at
all points where x 7→ FX(x) is cts). Sheet 4 Q1, approximate indictators.

Theorem 6.3
Let X be a r.v. in Rd with law µX . Then the characteristic function φX = µ̂X

10RHS implies LHS, as if true for f = 1[a,b] then true on a π-system so done. We can approximate such f
with bdd cts fcns and so done.
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uniquely determines µX . In addition, if φX ∈ L1, then µX has a bdd cts pdf fX(x) =
1

(2π)d

∫
Rd e−i〈u,x〉φX(u) du a.e..

Proof. Let Z = (Z1, . . . , Zd) be a vector of independent and identically distributed
r.v.s, independent of X , with Zj ∼ N(0, 1). Then

√
tZ has pdf gt and X +

√
tZ has

pdf ft = µX ∗ gt. Then, f̂t(u) = µ̂X(u)ĝt(u) = φX(u)e− |u|2t
2 . So by F.I. of Gaussian

convolutions,
ft(x) = 1

(2π)d

∫
Rd

e−i〈u,x〉φX(u)e− |u|2t
2 du

which is uniquely determined by φX .

We show on an example sheet that two Borel prob measures µ, ν on Rd coincide iff
µ(g) = ν(g) ∀g : Rd → R bdd, cts with compact support. Now,

∫
Rd

g(x)ft(x) dx = E

g(X +
√

tZ)︸ ︷︷ ︸
→X a.s.


Since

∣∣∣g(X +
√

tZ)
∣∣∣ ≤ ‖g‖∞ < ∞, by BCT, this converges as t → 0 to E [g(X)] =∫

Rd g(x) dµX(x) (∗). So by uniqueness of limits, φX determines µX .

If φX ∈ L1, then e−i〈u,x〉φX(u)e− |u|2t
2 −→

t→0
e−i〈u,x〉φX(u). By DCT, ft(x) → fX(x) as

t → 0 ∀x.

In particular, since µX ∗ gt ≥ 0, fX ≥ on Rd. Then, for any bdd cts g with compact
support,

∫
g(x)ft(x)

As t→0,→g(x)fX(x)

dx →
∫

g(x)fX(x) dx by DCT as |ft(x)| ≤ 1
(2π)d

‖φX‖1

By (∗),
∫

g(x) dµX(x) =
∫

g(x)fX(x) dx ∀g bdd cts with compact support.

Thus µX has density fX .

Theorem 6.4 (Lévy’s continuity theorem)
Let Xn, X be r.v.s on Rd, s.t. φXn(u) → φX(u) ∀u, as n → ∞. Then Xn → X weakly.

Remark 51. 1. A stronger version of this theorem is that if φXn(u) → φ(u) ∀u for some
fcn φ that is cts in a nbd of 0, then φ is the c.f. of some r.v. X and Xn → X weakly.

2. Cramer’ Wold device: Let (Xn), X be r.v.s on Rd, then Xn → X weakly iff
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〈u, Xn〉 → 〈u, X〉 ∀u ∈ Rd weakly or in distribution in R. LHS =⇒ RHS
by continuous mapping theorem, the converse holds as ei〈u,x〉 is bdd cts so
E[f(Xn)] = φXn(u) → E[f(x)] = φX(u) ∀u. So done by Lévy’s.

3. The converse holds by definition of weak convergence, testing against the complex
exponentials in the Fourier transform.

Proof. Let g : Rd → R be compactly suppored and Lipschitz cts, i.e. |g(x) − g(y)| ≤
Cg|x − y| ∀x, y ∈ Rd. This includes all g ∈ C∞

c as any fcn with bounded derivative
is Lipschitz. Enough to show, E[g(Xn)] → E[g(X)].

Let Z ∼ N(0, Id) indep of (Xn), X . Then for fixed ε > 0, choose t > 0 small enough
s.t. Cg

√
tE [|Z|] ≤ ε

3 . Then,

|µXn(g) − µX(g)| = |E [g(Xn)] − E [g(X)]|

≤
∣∣∣E [g(Xn) − g(Xn +

√
tZ)

]∣∣∣+ ∣∣∣E [g(X) − g(X +
√

tZ)
]∣∣∣

+
∣∣∣E [g(Xn +

√
tZ) − g(X +

√
tZ)

]∣∣∣
≤ E

[∣∣∣g(Xn) − g(Xn +
√

tZ)
∣∣∣]+ E

[∣∣∣g(X) − g(X +
√

tZ)
∣∣∣]

+
∣∣∣E [g(Xn +

√
tZ) − g(X +

√
tZ)

]∣∣∣
≤ 2Cg

√
tE [|Z|] +

∣∣∣E [g(Xn +
√

tZ) − g(X +
√

tZ)
]∣∣∣

≤ 2ε

3
+
∣∣∣E [g(Xn +

√
tZ) − g(X +

√
tZ)

]∣∣∣
We show that the remaining term can be made less than ε

3 as n → ∞. Let ft,n(x) =
gt ∗ µXn . Then, by Fourier inversion for Gaussian convolutions,

E
[
g(Xn +

√
tZ)

]
=
∫
Rd

g(x)ft,n(x) dx

= 1
(2π)d

∫
Rd

g(x)
∫
Rd

e−i〈u,x〉φXn(u)e− |u|2t
2 du dx

Since characteristic functions are bounded by 1, we can use DCT with dominating
function |g(x)|e− |u|2t

2 to find

E
[
g(Xn +

√
tZ)

]
→ 1

(2π)d

∫
Rd

g(x)
∫
Rd

e−i〈u,x〉φX(u)e− |u|2t
2 du dx

=
∫
Rd

g(x)ft(x) dx

= E
[
g(X +

√
tZ)

]
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where ft = gt ∗ µX . So as n → ∞, the difference between these two terms can be
made less than ε

3 as required.

Note. We like adding Gaussians, as pdf of X + Z exists due to Z having a pdf. Also, pdf
is a Gaussian convolution, which is nice.

Theorem 6.5 (Central Limit Theorem)
Let X1, . . . , Xn be iid r.v.s on R with E [Xi] = 0 and Var Xi = 1. Let Sn =

∑n
i=1 Xn.

Then
1√
n

Sn
weakly−−−−→ aZ ∼ N(0, 1)

In particular,
P
( 1√

n
Sn ≤ x

)
→ P (Z ≤ x)

aAs d = 1 equiv to in distribution convergence

Proof. Let X = X1. The characteristic function φ(u) = φX(u) = E
[
eiuX

]
satisfies

φ(0) = 1. As E[X2] < ∞ by DUTIS φ′(u) = iE
[
XeiuX

]
, φ′′(u) = i2E

[
X2eiuX

]
(Sheet 3). We can find φ′(0) = iE [X] = 0 and φ′′(0) = −E

[
X2] = − Var X = −1.

By Taylor’s theorem, φ(v) = 1 − v2

2 + o(v2) as v → 0. Now, denoting φn(u) =
φ 1√

n
Sn

(u), we can write

φn(u) = E
[
e

i u√
n

(X1+···+Xn)]
=

n∏
j=1

E
[
e

i u√
n

Xj
]

=
[
φ

(
u√
n

)]n

=
[
1 − u2

2n
+ o

(
u2

n

)]n

=
[
1 − u2

2n
+ o

( 1
n

)]n

fixing u and letting n → ∞

The complex logarithm satisfies log(1 + z) = z + o(z), so by taking logarithms, we
find

log φn(u) = n log
(

1 − u2

2n
+ o

( 1
n

))
= −u2

2

Hence, φn(u) → e− |u|2
2 = φZ(u). So by Lévy’s continuity theorem, the result fol-
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lows.

Remark 52. The CLT in Rd can be proved similarly using the Cramer-Wold device and
properties of multi-variate Guassians.

Definition 6.11 (Gaussian)
A r.v. on R is Gaussian (N(µ, σ)), if it has density

1√
2πσ

e− (x−µ)2

2σ2

for µ ∈ R, σ > 0.

Definition 6.12 (Gaussian)
A r.v. X in Rd is Gaussian if 〈Xn, v〉 are Gaussian for each v ∈ Rd.

Example 6.2
If X1, . . . , Xn

iid∼ N(0, 1), then X = (X1, . . . , Xn) is Gaussian in Rn. Check the c.f. of
〈X, v〉

Proposition 6.3
Let X be Gaussian in Rn, A is an m × n matrix and b ∈ Rm. Then

1. AX + b is Guassian in Rm.

2. X ∈ L2(Rd), and µ = E [X] and V = Cov (Xi, Xj) exist and determine µX .

3. φX(u) = ei〈µ,u〉− 〈u,V u〉
2

4. If V is invertible, then µX has pdf

fX(x) = (2π)− d
2 (det V )− 1

2 exp
{

−1
2

〈
x − µ, V −1(x − µ)

〉}

5. Subvectors X(1), X(2)
a of X are indep iff Cov (X(1), X(2)) = 0.

aX(1), X(2) disjoint X

Proof. Proofs are easy, and in examples sheets and James Norris’ notes.
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§7 Ergodic theory

§7.1 Laws of Large Numbers

Proposition 7.1 (Weak Law of Large Numbers)
Let (Xn)n∈N be iid s.t. E [Xn] = µ and Var Xn = σ2 < ∞. Then 1

n

∑n
i=1 Xi → µ in

probability as n → ∞.

Proof. By Chebyshev’s inequality,

P
(∣∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
≤ 1

n2ε2 Var
n∑

i=1
Xi = σ2

nε2
n→∞−−−→ 0

So 1
n

∑n
i=1 Xi → µ in probability.

This result has several weaknesses, and we can provide stronger results.

Proposition 7.2 (Strong Law of Large Numbers)
Let (Xn)n∈N be iid s.t. E [Xn] = µ < ∞. Then 1

n

∑n
i=1 Xi → µ a.s. as n → ∞.

Proposition 7.3
Let (Xn)n∈N be indep with E [Xn] = µ and E

[
X4

n

]
≤ M ∀n. Then 1

n

∑n
i=1 Xi → µ

a.s. as n → ∞.

Proof. Let Yn = Xn − µ. Then E [Yn] = 0, and E
[
Y 4

n

]
≤ 24(E [X4

n

]
+ µ4) < ∞.

So we can assume µ = 0. For distinct indices i, j, k, ℓ, by independence and the
Cauchy–Schwarz inequality, we have

0 = E [XiXjXkXℓ] = E
[
X2

i XjXk

]
= E

[
X3

i Xj

]
E
[
X2

i X2
j

]
≤
√
E
[
X4

i

]√
E
[
X4

j

]
≤ M

So we can compute

E

( n∑
i=1

Xi

)4
 = E

[
n∑

i=1
X4

i

]
+ 6E

∑
i<j

X2
i X2

j

 ≤ nM + 3n(n − 1)M ≤ 3n2M
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Let Sn =
∑n

i=1 Xi. Then,

E
[(

Sn

n

)4
]

≤ 1
n4 3n2M

E
[ ∞∑

n=1

(
Sn

n

)4
]

=
∞∑

i=1
E
[(

Sn

n

)4
]

by MCT

≤
∞∑

n=1

3M

n2 < ∞

Hence∑∞
n=1

(
Sn
n

)4
< ∞ almost surely. But then

(
Sn
n

)4
→ 0 almost surely, so Sn

n →
0 almost surely.

§7.2 Invariants - Measure Preserving Transformations

Let (E, E , µ) be a σ-finite measure space.

Definition 7.1 (Measure Preserving)
A measurable map Θ: E → E is measure-preserving (m.p.) if µ ◦ Θ−1 = µ, i.e.
µ(Θ−1(A)) = µ(A) ∀A ∈ E .

In this case, for any integrable function f ∈ L1(µ), we have
∫

E f dµ =
∫

E f ◦ Θ dµ as∫
E f ◦ Θ dµ =

∫
E f dµ ◦ Θ−1.

Definition 7.2 (Θ-Invariant)
A measurable map f : E → R is called Θ-invariant if f ◦ Θ = f .
A set A ∈ E is Θ-invariant if Θ−1(A) = A, or equivalently, 1A is Θ-invariant.

The collection EΘ of Θ-invariant sets forms a σ-algebra over E. A function f : E → R is
invariant iff f is EΘ-measurable (Sheet 4).

Definition 7.3 (Ergodic)
Θ is called ergodic if the EΘ is µ-trivial, i.e. ∀A ∈ EΘ µ(A) = 0 or µ(Ac) = 0.

The point is an ergodic transformation mixes the sets well. Boltzman (1880), Ergodic
hypothesis - over long times, a gas particle in some space will “fill the whole space”,
it will be arbitrarily close to any point in the space. You could imagine a trajectory,
x, Θ(x), Θ2(x), . . .

For Markov Chains, ergodicity ⇐⇒ irreducibility.
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Fact 7.1
If f is Θ-invariant, Θ is ergodic iff f is constant a.s. on E (Sheet 4).

Proof. See Sheet 4. We want to show distribution of f is a step function. We know
f ∈ EΘ so µ(f−1(−∞, x)) = 0 or µ(f−1[x, ∞)) = 0. Hence f is constant.

Example 7.1
Consider (E, E) = ((0, 1], B) with the Lebesguemeasure µ. The maps Θa(x) = x+a
modulo 1 and Θ(x) = 2x modulo 1 are both m.p., and ergodic unless a ∈ Q (Sheet
4).

§7.3 Ergodic Theorems

Lemma 7.1 (Maximal Ergodic Lemma)
Let (E, E , µ) be a σ-finite measure space. Let Θ: E → E be m.p.. For f ∈ L1(µ), we
define S0(f) = 0 and Sn(f) =

∑n−1
k=0 f ◦ Θk. Let S⋆ = S⋆(f) = supn≥0 Sn(f). Then∫

{S⋆>0} f dµ ≥ 0.

Proof (non-examinable). Define S⋆
n = maxk≤n Sk. Then clearly S⋆

n ↑ S⋆, and Sk ≤ S⋆
n

for all k ≤ n. Note that for m ≤ n + 1, Sm = Sm−1 ◦ Θ + f ≤ S⋆
n ◦ Θ + f .

Define An = {S⋆
n > 0}. On An, we have

S⋆
n = max

1≤k≤n
Sk ≤ max

1≤k≤n+1
Sk ≤ S⋆

n ◦ Θ + f

since S0 = 0. We can integrate this inequality to find∫
An

S⋆
n dµ ≤

∫
An

S⋆
n ◦ Θ dµ +

∫
An

f dµ

On Ac
n, we must have S⋆

n = 0 ≤ S⋆
n ◦ Θ. Hence,∫

E
S⋆

n dµ ≤
∫

E
S⋆

n ◦ Θ dµ +
∫

An

f dµ

Since Θ is m.p., ∫
E

S⋆
n dµ ≤

∫
E

S⋆
n dµ +

∫
An

f dµ
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so we obtain (as S⋆
n ∈ L1) ∫

An

f dµ ≥ 0 ∀n.

An = {S⋆
n > 0} = {max0≤m≤n Sm > 0} =

⋃n
m=0 {Sm > 0} ↑

⋃∞
m=0 {Sm > 0} =

{sup Sm > 0} = S⋆.
Hence, 1An → 1S⋆>0 and so f1An → f1{S⋆>0} pointwise, and |f1An | ≤ |f | ∈ L1(µ),
by DCT ∫

{S⋆>0}
f dµ = lim

n→∞

∫
An

f dµ ≥ 0

as required.

Remark 53. Let µ be a finite measure. Then for f ∈ L1 and any α > 0, define Sk = Sk(f)
k

and S
⋆ = supk≥0 Sk, then

µ
(
S

⋆
> α

)
≤ 1

α

∫
S

⋆
>α

f dµ ≤ 1
α

∫
E

|f | dµ .

Proof. Proof is left as an exercise, follows from shifting f by α and then applying
the maximal ergodic theorem.

Exercise 7.1. For µ a prob measure and f ∈ L1(µ), show that
{

Sn(f)
n : n ∈ N

}
is UI.

Hence Sn(f)
n → f in L1 by Birkhoff’s. If Θ is ergodic, then f =

∫
f dµ a.s..

Theorem 7.2 (Birkhoff’s Ergodic Theorem)
Let (E, E , µ) be a σ-finitemeasure space. Let Θ: E → E bem.p.. For f ∈ L1(E, E , µ),
we define S0 = 0 and Sn = Sn(f) =

∑n−1
k=0 f ◦ Θk. Then ∃ a Θ-invariant integrable

fcn f ∈ L1(E, E , µ) with µ
(∣∣∣f ∣∣∣) ≤ µ(|f |) s.t. Sn(f)

n → f a.e. as n → ∞.

Remark 54. If Θ ergodic, f̄ is constant a.e..

Relating back to the gas example, x, Θ(x), . . . is the trajectory of a gas particle. Then
Sn(f)

n is the average of f along the trajectory (time average). Then f is the average of f
over the whole space.

Proof (non-examinable). Since µ(
∣∣f ◦ Θn−1∣∣) = µ(|f |), we have µ(|Sn|) ≤ nµ(|f |) and
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thus by Fatou’s

µ
(∣∣∣f ∣∣∣) = µ

(
lim inf

n

∣∣∣∣Sn

n

∣∣∣∣) ≤ lim inf
n

µ

(∣∣∣∣Sn

n

∣∣∣∣) ≤ µ(|f |).

Note that
Sn ◦ Θ

n
= Sn+1 − f

n + 1
n + 1

n

So, lim sup
n

Sn ◦ Θ
n

= lim sup
n

Sn+1
n + 1

= lim sup
n

Sn

n

and the same holds for lim infn. Hence lim supn
Sn
n and lim infn

Sn
n are invariant

functions. So they are EΘ-measurable. Hence

D = Da,b =
{

lim inf
n

Sn

n
< a < b < lim sup

n

Sn

n

}
are measurable and invariant sets.

It suffices to show that µ(D) = 0. As letting ∆ =
{

lim inf
(

Sn
n

)
< lim sup

(
Sn
n

)}
=⋃

a<b∈Q Da,b. Hence if µ(D) = 0 =⇒ µ
(⋃

a<b∈Q Da,b

)
= 0 =⇒ µ(∆) = 0. Define,

f =
{

lim inf Sn
n = lim sup Sn

n x ∈ ∆c

0 x ∈ ∆

then Sn/n → f µ-a.e. and f is Θ invariant (as lim inf Sn
n and ∆ are Θ-invariant).

Fix a < b. Note that Θ : D → D by invariance and Θ is µ |D-measure preserving as

µ

∣∣∣∣
D

(A) = µ(A ∩ D) = µ(Θ−1(A ∩ D)) = µ(Θ−1(A) ∩ Θ−1(D))

= µ(Θ−1(A) ∩ D) = µ

∣∣∣∣
D

(Θ−1(A))

Also either b > 0 or a < 0 (if a < 0 change f to −f and a to −b, then b = −a > 0).
So assume b > 0 wlog.

We will apply the ?? with E = D and µ = µ|D. Let B ∈ E , where B ⊆ D s.t.
µ(B) < ∞. Let g = f − b1B ∈ L1(µ). Then,

Sn(g) = Sn(f) − bSn(1B) ≥ Sn − bn

which is positive on D for some n by the definition of lim supn. Hence, S⋆(g) =
supn≥0 Sn(g) > 0 on D.
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So D = {S⋆ > 0} ∩ D. Then by the ?? on D,

0 ≤
∫

D∩{S⋆>0}
g dµ =

∫
D

g dµ =
∫

D
f dµ − bµ(B)

Hence, bµ(B) ≤
∫

D f dµ.

By σ-finiteness, this inequality extends to D; ∃ measurable sets Bn ↑ D where
µ(Bn) < ∞. Hence taking limits, bµ(D) = b limn µ(Bn) ≤

∫
D f dµ. Thus µ(D) < ∞

as f ∈ L1.
Repeating a similar arguments to abovea for −f and −a, we obtain −aµ(D) ≤∫

D −f dµ. Combining these two inequalities gives

bµ(D) ≤
∫

D
f dµ ≤ aµ(D)

But a < b and µ(D) < ∞, so µ(D) = 0.
aNow however we take D instead of B and g′ = −f − (−a)1D . On D, Sn(g′) = Sn(−f) −

(−a)S(1D) = Sn(−f) − (−a)n1D = Sn(−f) − (−a)n as D is Θ invariant, i.e. Sn(1D) = 1D .

Theorem 7.3 (von Neumann’s Lp Ergodic Theorem)
Let µ(E) < ∞ and 1 ≤ p < ∞. Then for f ∈ Lp(µ), Sn(f)

n → f in Lp as n → ∞.

Proof. Since Θ is m.p., we have

‖f ◦ Θn‖p
p =

∫
E

|f |p ◦ Θn dµ =
∫

E
|f |p dµ =

∫
E

|f |p dµ = ‖f‖p
p

Thus, by Minkowski’s inequality, for all f ∈ Lp we have
∥∥∥∥Sn(f)

n

∥∥∥∥
p

≤ 1
n

n−1∑
i=0

∥∥∥f ◦ Θi
∥∥∥

p
= ‖f‖p

So Sn(f)
n is a contraction inLp. For eachK > 0, we define fK = max(min(f, K), −K).

Then

‖f − fK‖p
p =

∫
E

|f − fK |p1|f |>K dµ

Since 1|f |>K → 0 pointwise, and |f − fK | ≤ 2|f |p ∈ L1, we find ‖f − fK‖p < ε
3 by

DCT, for sufficiently large K = Kε.

As |fK | ≤ K, we have
∣∣∣Sn(fK)

n

∣∣∣ ≤ K. Since µ is finite, fK ∈ L1(µ), so by Birkhoff’s
ergodic theorem, Sn(fK)

n → fK a.e. for some invariant fK ∈ L1. Note that fk is
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bounded by K as Sn(fK)
n is bounded by K. By the bounded convergence theorem,

we deduce that
∥∥∥Sn(fK)

n − fK

∥∥∥ → 0 as n → ∞. Further, this holds in Lp since
∥∥∥∥Sn(fK)

n
− fK

∥∥∥∥
p

≤ (2K)
p−1

p

∥∥∥∥Sn(fK)
n

− fK

∥∥∥∥
1

<
ε

3

where the last inequality holds for sufficiently large n. Since µ is a finite measure,
Lp(µ) ⊆ L1(µ), hence by Birkhoff’s ergodic theorem, Sn(f)

n → f a.e. as f → ∞.
Then, by the contraction property applied to f − fK ,∥∥∥f − fK

∥∥∥p

p
=
∫

E

∣∣∣f − fK

∣∣∣p dµ

=
∫

E
lim inf

n

∣∣∣∣Sn(f) − Sn(fK)
n

∣∣∣∣p dµ

≤ lim inf
n

∫
E

∣∣∣∣Sn(f) − Sn(fK)
n

∣∣∣∣p dµ by Fatou

= lim inf
n

∫
E

∣∣∣∣Sn(f − fK)
n

∣∣∣∣p dµ

= lim inf
n

∥∥∥∥Sn(f − fK)
n

∥∥∥∥p

p

≤ lim inf
n

‖f − fK‖p
p shown earlier by Minkowski

= ‖f − fK‖p
p <

(
ε

3

)p

So in particular, f ∈ Lp. Then by Minkowski,∥∥∥∥Sn(f)
n

− f

∥∥∥∥
p

≤
∥∥∥∥Sn(f) − Sn(fK)

n

∥∥∥∥
p

+
∥∥∥∥Sn(fK)

n
− fK

∥∥∥∥
p

+
∥∥∥f − fK

∥∥∥
p

<

∥∥∥∥Sn(f) − Sn(fK)
n

∥∥∥∥
p

+ 2ε

3

≤ ‖f − fK‖p + 2ε

3
= ε

for sufficiently large n.

Remark 55.

1. If µ a prob measure and Θ ergodic, then f̄ is a constant a.s., so f̄ =
∫

f̄ dµ. Also,∫
f dµ =

∫ Sn(f)
n dµ →

∫
f̄ dµ ∀n. Hence

∫
f̄ dµ =

∫
f dµ.

Then, Sn(f)
n

n→∞−−−→ E[f ] µ a.s. and in L1.

2. For Θ m.p. and f ∈ L1, Sn(f)
n

µ a.s and L1
−−−−−−−→ E[f | EΘ]. For f ∈ L2, E[f | EΘ] is (a

version of) the projection of f on L2(EΘ).
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§7.4 Infinite product spaces

Let E = RN = {x = (xn)n∈N} be the space of real sequences. Consider

C =
{

A =
∞∏

n=1
An : An ∈ B, ∃N ∈ N, ∀n > N, An = R

}

This forms a π-system, which generates the cylindrical σ-algebra σ(C). We can show
that σ(C) = σ({fn : n ∈ N}) where fn(x) = xn are the coordinate projection functions
on E. We can also show σ(C) = B(RN) for the product topology or the topology of
pointwise convergence.

Let (Xn)n∈N be a sequence of iid r.v.s defined on (Ω, F ,P) with common law µXn = m
for all n; this exists by an earlier theorem. We define a map X : Ω → E by X(ω) =
(X1(ω), X2(ω), . . . ). This is σ(C) measurable, since for all A ∈ C, we have

X−1(A) = {ω : X1(ω) ∈ A1, . . . , XN (ω) ∈ AN } =
N⋂

n=1
X−1

n (An) ∈ F

We denote µ = P ◦ X−1, which is the unique product prob measure in E satisfying

µ

( ∞∏
n=1

An

)
= lim

N→∞
µ

(
N∏

n=1
An

)
= lim

N→∞
P (X1 ∈ A1, . . . , XN ∈ AN )

= lim
N→∞

P (X1 ∈ A1) · · ·P (XN ∈ AN )

=
∞∏

n=1
P (Xn ∈ An)

=
∞∏

n=1
m(An)

Note that we need to use finiteness of N to exploit independence of the Xi. We call
(E, E , µ) = (RN, σ(C), mN) the canonical model for an infinite sequence of iid r.v.s of
law m.

Definition 7.4 (Shift Map)
The shift map Θ: E → E is defined by Θ(x1, x2, . . . ) = (x2, x3, . . . ).

Theorem 7.4
On (E, E , µ), the shift map Θ is measurable, m.p. and ergodic.
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Proof. Measurability is obvious.

For A ∈ C,

µ(A) = P (X1 ∈ A1, . . . , XN ∈ AN )
= P (X1 ∈ A1) · · ·P (XN ∈ AN )

=
N∏

n=1
m(An)

= P (X2 ∈ A1) · · ·P (XN+1 ∈ AN )
= µ(Θ−1(A))

so Θ is m.p. as m.p. on π-system C.

Recall that the tailσ-algebra is definedby T =
⋂

n Tn where Tn = σ(Xn+1, Xn+2, . . . ) =
σ(fn+1, fn+2, . . . ). Note that for all A ∈ C, we have

Θ−n(A) = Rn × A1 × A2 × . . .

=
{

x ∈ RN : (xn+1, xn+2, . . . ) ∈ A
}

∈ Tn

Now, if A is invariant, A = Θ−n(A) ∈ Tn ∀n, so A ∈ T . By Kolmogorov’s zero-one
law as (Xi) iid, µ(A) = 0 or µ(A) = 1 as required for ergodicity.

We can apply Birkhoff’s ergodic theorem to Θ. If f ∈ L1(µ), then Sn(f)
n → f ∈ L1(µ)

almost surely. Since f is invariant and Θ is ergodic, f is almost surely constant. By von
Neumann’s Lp-ergodic theorem, convergence holds in fact in L1.

§7.5 Strong law of large numbers

Theorem 7.5
Let m be a prob measure on R s.t.

∫
R |x| dm(x) < ∞ and

∫
R x dm(x) = ν. Let

(E, E , µ) be the canonical model where the coordinate maps fn(x) = xn are iid with
law m. Then

µ

({
x ∈ RN : x1 + x2 + · · · + xn

n
→ ν

})
= 1

Proof. Let Θ : E → E be the shift map Θ(x1, x2, . . . ) = (x2, x3, . . . ). It is m.p. and
ergodic by previous thm. Consider f : E → R as f(x) = x1. Then f ∈ L1(µ),
since

∫
E |f | dµ =

∫
R dµ ◦ f−1(x) =

∫
R |x1| dm(x1) < ∞. So by Birkhoff and von-

Neumann, as Θ ergodic, by ??, Sn(f)
n = x1+···+xn

n → f̄ =
∫

f dµ =
∫
R x1 dm(x1) = ν

µ a.s.
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Theorem 7.6 (Kolmogorov SLLN (1930))
Let (Xn)n∈N be iid r.v.s s.t. E [|X1|] < ∞. Then 1

n

∑n
i=1 Xi → E [X1] almost surely.

Proof. Let m be the law of Xn, ν = E[X1] and µ = P ◦ X−1 where X : Ω → E = RN

is X(ω) = (X1(ω), X2(ω), . . . ). Then apply ??,

P
(

1
n

n∑
i=1

Xi → E [X1]
)

= µ

({
x : x1 + · · · + xn

n
→ ν

})
= 1

Remark 56. The hypothesisE [|X|] < ∞ cannot beweakened; we see on an example sheet
that 1

n

∑n
i=1 Xi can exhibit various behaviours. Note that this notion of convergence is

stronger than the weak convergence seen in the central limit theorem. The law of the
iterated logarithm is that

lim sup
n

X1 + · · · + Xn√
2n log log n

= 1

almost surely, and −1 for the limit inferior. In particular, the central limit theorem does
not hold almost surely.

Corollary 7.1
By von Neumann’s ergodic theorem, in the strong law of large numbers, we have
E
[∣∣∣ 1

n

∑n
i=1 Xi − E [X]

∣∣∣] → 0 as n → ∞.

Aside

1. If (µn) is a sequence in Rn of prob measures that converges weakly to µ, then (µn)
is “tight”, i.e. ∀ε > 0, ∃ a compact set K s.t. µn(Kc) < ε ∀n.

2. If (µn) a sequence of probmeasures that are tight, then ∃ a subsequence (nk) and a
prob measure µ s.t. (µnk

) → µ weakly (Prokhorov’s thm or Banach-Alaoglu thm).

3. If distributions Fn
d−→ F , then ∃ a prob space s.t. µXn is Fn and Xn → X a.s..

4. If Xn
d−→ X and Yn

d−→ Y then Xn + Yn 6→ X + Y , in fact X, Y are not necessarily
even defined in the same prob space so X + Y doesn’t even make sense.
However, if Xn

d−→ X and Yn
P−→ c, where c is a constant. Then (Xn, Yn) → (X, c)

so by continuous mapping thm Xn + Yn
d−→ X + c (Slutsky’s thm).
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This is quite useful in stats where with CLT if variance is unknownwe can replace
it with std deviation which converges to the true value a.s. and hence in P.
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