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§0 Holes in classical theory

Holes in Analysis

1. What is the “volume” of a subset of R?.

2. Integration (Riemann Integration has holes)

e 3{f,} a sequence of continuous functions on [0, 1] s.t.
- 0< fo(z) <1Vz €[0,1].
- fn(x) is monotonically decreasing on n — oo, i.e. fp(x) > fni1(z) Va.

So, limy, o fn(x) exists. Further lim, fol fn(z)dz exists But f is not
Riemann integrable (we can choose appropriate f,).
We want a theory of integration s.t. f is integrable and lim,, oo [y fn(2)dz =

fol f(z)dz.



3. Define L' = (C[0,1], ||-||,) (the bar represents that we take the completion) where
||-||; is @ norm defined as || f||; = fol |f(z)| dz (well-defined as f cts).
If f € L' is f Riemann integrable? Will have to change the definition of integral.
L? is a hilbert space gives Fourier Analysis.

Holes in Probability

1. Discrete probability has its limitations,

e Toss a unbiased coin 5 times. What is the probability if getting 3 heads? This
is fine.

e Take an infinite sequence of coin tosses (E = {0, 1} which is uncountable)
and an event A that depends on that infinite sequence. How do you define

P(A)? E.g. X; ~ Ber (%) iidand A = iz Xi, the average number of heads.

By strong law of large numbers P (W — %) =1
e How to draw a point uniformly at random from [0, 1]? U ~ U[0, 1]. Probabil-

ity needs axioms to be made rigorous.

2. Define Expectation for a r.v.. Also would want the following if 0 < X,, < 1 and
X, |l X thenEX, — EX.



§1 Introduction

Notation. 4, 1 A means that the sequence A, is increasing (4; € A; C ...) and
U, 4n = A.

§1.1 Definitions

Definition 1.1 (o-algebra)
Let £ be a (nonempty) set. A collection £ of subsets of E is called a o-algebra if the
following properties hold:

e Jc¢&;
e Acf = A°=FE\A€&;

e if (A,)nen is a countable collection of sets in &, J,,cy An € €.

Example 1.1
Let £ = {@, E}. This is a o-algebra. Also, P(E) = {A C E} is a o-algebra.

Remark 1. Since N,, 4, = (U,, AS), any o-algebra £ is closed under countable intersec-
tions as well as under countable unions. Note that B\ A = BN A¢ € &, so o-algebras
are closed under set difference.

Definition 1.2 (Measurable Space and Set)

A set E with a o-algebra £ is called a measurable space. The elements of £ are called
measurable sets.

Definition 1.3 (Measure)

A measure 4 is a set function i : £ — [0, 00|, such that ;(@) = 0, and for a sequence
(Ap)nen such that the A,, are disjoint, we have

M(U An) = 2 #lAn)

neN neN

This is the countable additivity property of the measure.

Remark 2. (E, &, i) is a measure space.



Remark 3. If E is countable, then for any A € P(E) and measure p, we have

p(A) = u( U {$}> = > ul{z})

€A €A
Hence, measures are uniquely defined by the measure of each singleton.

Define m : E — [0,00] s.t. m(x) = u({z}), such an m is called a “mass function”, and
measures (4 are in 1-1 correspondence with the mass function m. This corresponds to
the notion of a probability mass function.

Here £ = P(F) and this is the theory in elementary discrete prob. (when p({z}) =
1Vz € E, puis called the counting measure. Here p(A) = |A| VA C E).

For uncountable E however, the story is not so simple and £ = P(F) is generally not
feasible. Indeed measures are defined on o-algebra “generated” by a smaller class A of
simple subsets of F.

Definition 1.4 (Generated o—algebra)
For a collection A of subsets of E, we define the o-algebra o(A) generated by A by

o(A)={ACE: Ac & forall s-algebras £ O A}

So it is the smallest o-algebra containing .A. Equivalently,

o(A) = ﬂ £

EDA, £ ao-algebra

Question
Why is 0(A) a o-algebra? See Sheet 1, Q1.

§1.2 Rings and algebras

The class A will usually satisfy some properties too, let E be a set and A a collection of
subsets of E. To construct good generators, we define the following.

Definition 1.5 (Ring)

A C P(FE) is called a ring over Fif @ € Aand A, B € A implies B\ A € Aand
AUBc€ A

Rings are easier to manage than o-algebras because there are only finitary operators.



Definition 1.6 (Algebra)
Ais called an algebra over F'if @ € Aand A, B € Aimplies A° € Aand AUB € A.

Remark 4. Rings are closed under symmetric difference A 4 B = (B\ A) U (A\ B), and
are closed under intersections AN B = AU B\ A & B. Algebras are rings, because
B\ A= BnNA®=(B°UA) Not all rings are algebras, because rings do not need to
include the entire space.

The idea:
e Define a set function on a suitable collection .A.

e Extend the set function to a measure on o(A). (Carathéodory’s Extension the-
orem)

e Such an extension is unique. (Dynkin’s Lemma)
Goal: Start with a “measure” on A that has some nice properties and then extend it to

a(A).

Definition 1.7 (Set Function)

A set function on a collection A of subsets of E, where @ € A, isa map p: A —
[0, o] such that u(@) = 0.

e We say p is increasing if ;i(A) < pu(B) forall A C Bin A.

e We say p is additive if (A U B) = p(A) + pu(B) for disjoint A, B € A and
AUBc€ A

e We say 1 is countably additive if p(UJ,, An) = >_,, #(Ay) for disjoint sequences
A, where |J,, A,, and each A, lie in A.

e We say p is countably subadditive if x(,, An) < >, u(A,) for arbitrary se-

quences A,, under the above conditions.

Remark 5. If 11 is countably additive set function on A and A is a ring then p satisfies all
the previous listed properties.

Proposition 1.1 (Disjointification of countable unions)

Consider |J,, Ay, for A,, € £, where € is a o-algebra (or a ring, if the union is finite).
Then there exist B,, € £ that are disjoint such that |J,, A, = U,, Bn-

Proof. Define A, = Uj<n 4j, then B, = A, \ Ay, O



Remark 6. A measure satisfies all four of the above conditions. Countable additivity
implies the other conditions. Proof on Sheet 1.

Theorem 1.1 (Carathéodory’s theorem)

Let 1 be a countably additive set function on a ring A of subsets of E. Then there
exists a measure p* on o (A) such that p*| , = p.

We will later prove that this extended measure is unique.

Proof (Non Examinable). For B C E, we define the outer measure p* as

w*(B) :inf{Zu(An) A, € A, B C U An}

neN neN

If there is no sequence A,, such that B C (J,,cn An, we declare the outer measure
p*(B) to be co. Clearly, 1* (@) and p* is increasing, so p* is an increasing set fcn on
P(E).

Definition 1.8 (u* measurable)
Aset A C E p* measurable if VB C E p*(B) = p*(BNA) + p (BN A°).

We define the class
M ={ACE: Ais u* measurable}

We shall show that M is a o-algebra that contains A, i |/ is a measure on M that
extends p (ie. pu*| 4 = ).

Step 1. p* is countably sub-additive on P(E): It suffices to prove that for B C E and
B,, C E such that B C |J,, B, we have

pH(B) <> pt(Bn) (1)

n

We can assume without loss of generality that p*(B,) < oo for all n, otherwise
there is nothing to prove. For all € > 0 there exists a collection A, ;,, € A such that
B, € Uy, Anm and

* g
W (Bn) + 57 = > i(Anm)




as we took an infimum. Now, since p* is increasing, and B C UJ,, B, € U,, U, An.ms
we have

< u*(U An,m> <Y p(Anm) <Y (Ba)+ Y 2% => w(B

Since € was arbitrary in the construction, () follows by construction.

Step 2. p* extends p: Let A € A, and we want to show p*(A) = p(A).

We can write A = AU@ U ..., hence p*(A) < u(A) + 0+ --- = u(A) by definition
of u*.

If ;+* is infinite, there is nothing to prove.

We need to prove the converse, that ;(A) < p*(A). For the finite case, suppose
there is a sequence A,, where p(A,) < coand A C |J,, A,. Then, A = J,,(ANA4,),
which is a union of elements of the ring A. As p is countably additive on A and
A is a ring, p is countably subadditive on A and increasing by ??. Hence u(A) <
Yo (ANA,) <3, 1(Ay). Since the A, were arbitrary taking the infimum over
A, we have (1(A) < p*(A) as required.

Step 3. M O A: Let A € A. We must show that forall B C E, u*(B) = p*(BNA) +
wr (BN A°).

Wehave B C (BN A)U(BNA°)U@U..., hence by countable subadditivity (}),
p*(B) < p*(BNA) + p*(B N A).

It now suffices to prove the converse, that p/*(B) > p*(B N A) 4+ p*(B N A°).

We can assume p*(B) is finite, and so Ve > 0 34,, € As.t. B C |J,, 4, and p*(B) +
e>>,u(Ay). Now, BNA CU,(A,NA),and BN A° C U, (A, N A°). All of the
members of these two unions are elements of A, since A,, N A° = A,, \ A. Therefore,

p*(B N A)+ p*(Bn A°) <Z,uA NA) +ZMA N A°)

<Z (An N A) + p(An N A)]
SZ,U' n) S W(B)+e

Since € was arbitrary, u*(B) = p*(B N A) + p*(B N A€) as required.

Step 4. Mis an algebra: Clearly @ lies in M, and by the symmetry in the definition of
M, complements lie in M. We need to check M is stable under finite intersections.
Let A1, A € M and let B C E. We have

p*(B) = p* (BN Ay) 4+ p* (BN AS)as Ay € M
= p*(BN A1 N Ag) + p*(BN A N AS) + p*(B N AS) taking B = BN Ay



We can write A; N AS = (A1 N A5)°N Ay, and A = (41 N A)¢ N AS. Hence

w(B)=p (BNA1NA) + Iu*(B N(A1NA)NA)+p (BN(A1 N AN Ai)l
u*(BN(A1NA2)¢) as A1eM
=p*(BNA;NAy)+ p (BN (A1 NAy)°)

which is the requirement for A; N A; to lie in M.

Step 5. M is a o-algebra and p* is a measure on M:

It suffices now to show that M has countable unions and the measure respects these
countable unions. Let A = |J,, 4, for A,, € M. Without loss of generality, let the
A, be disjoint. We want to show A € M, and that u*(A) = >, u*(A4,).

By (1), we have forany B C E p*(B) < p*(BNA) + p* (BN A°)+0+ ... sowe
need to check only the converse of this inequality. Also, p*(A4) < >, p*(A4,), so we
need only check the converse of this inequality as well. Similarly to before,

p*(B) = " (BN Ay) + p*(B N AS)
=p*(BNA)+p (BN  A{NAsy )+ u (BNAfNAS)
_
Ag as A1, Az disjoint
W (BN A+ p (BN A+ p (BN AN AS)
p (BN A+ p (BN As)+ p(BNA{NASN As) + pw* (BN Af N A5 N AS)
p (BN A1)+ p (BN As) + p* (BN As) + p* (BN AJ N A5 N AS)

> W (BNAR) +p*(BNASN---NAR)
n<N

Since U,, <y An € A, we have N, <y A7, 2 A°. p* is increasing, hence, taking limits,

W(B) 2 Y 1t (B O Ay) + (B0 AY)

n=1
By (1),
p*(B) =z p*(BNA) + p* (BN A%
as required. Hence M is a o-algebra. For the other inequality, we take the above
result for B = A.

o0

p( zz (AN A,) + p (AN A°) = Z

So p* is countably additive on M and is hence a measure on M. O



§1.3 Uniqueness of extension

To address uniqueness of extension, we introduce further subclasses of P(E). Let A be
a collection of subsets of E.

Definition 1.9 (7-system)

A collection A of subsets of E is called a 7-system if @ € Aand A,B € A =
ANBec A

Definition 1.10 (d-system)

A collection A of subsets of E is called a d-system if
o Fc A
e ABcAand AC Bthen B\ A€ A;

e A, € Aisan increasing sequence of sets then (J,, 4,, € A.

Remark 7. Equivalently, A is a d-system if
e A
e Ac A = A°cA
e A, € Aisasequence of disjoint sets then | J,, 4,, € A.
The difference between this and a o-algebra is the requirement for disjoint sets.

Proof on Sheet 1.

Proposition 1.2
A d-system which is also a 7-system is a o-algebra.

Proof. Sheet 1. O

Lemma 1.1 (Dynkin's Lemma/7m-\/7-d theorem)

Let A be a m-system. Then any d-system that contains .4 also contains o (.A).

Proof. We define

D= N D'

D’ is a d-system; D'D.A

We can show this is a d-system (proof same as in o(.A) on Sheet 1). It suffices to

10



prove that D is a m-system, because then it is a o-algebra”.

We now define
D'={BeD:YAc A, BNAecD}

We can see that A C D/, as A is a m-system.
We now show that D’ is a d-system, fix A € A.
o Clearly FNA=Ac ACD hence E€D.

o Let By,Bs € D’ such that B; C By. Then (B2 \ Bl) NA= (B2 ﬂA) \ (Bl N A),
and since B; N A € D this difference also lies in D, so By \ B € D'.

e Now, suppose B,, is an increasing sequence converging to B, and B,, € D'.
Then B,, N A € D, and D is a d-system, we have BN A € D,so B € D'.

Hence D' is a d-system. Also, D' C D by construction of D’. But also A C D" and D’
is a d-system so D C D’ as D is the smallest d-system containing .A. Thus D = 7/,
ieVBeDand Ac A, BNAE€D (%)

We then define
D'={BeD:YAeD,BNAecD}

Note that A C D" by (*). Running the same argument as before, we can show that
D" is a d-system. So D” = D. But then (by the definition of D"), VB € D, A €
D = BNAe€D,ie. Disan-system (check that @ € D).

So D is a o-algebra containing .4, hence D D o(A). O

"As D O Aand o(A) the intersection of all o-algebras containing A, D D o(A).

Theorem 1.2 (Uniqueness of Extension)

Let /11, 2 be measures on a measurable space (E, £), such that ; (E) = p2(E) < oo.
Suppose that 111 and p coincide on a m-system A, such that £ C o(.A). Then p; = po
on o(A), and hence on £.

Proof. We define
D={A€E: m(A) = us(A)}

This collection contains A by assumption. By Dynkin’s lemma, it suffices to prove
D is a d-system, because then D D o(A) D € givingD =E asD C £.

e &€ D,since () = u2(2) =0;

e AeD = (A) = p2(A), thus 11 (A°) = p1(E) — p1(A) = pa(E) — pa(A) =
w2 (A°), so A€ € D (p1, ps finite so this works);

11



e Let A, € Dbeadisjoint sequence then, 1 (U,, Arn) = > 11 (A4n) = > p2(4,) =
p2(U,, Arn) by countable additivity. So lJ,, A, € D.

So D is a d-system. O

Remark 8. If A, € A an increasing sequence s.t. A, 1 A, then pu(A4) = limy, o pu(4y).
Use this to show that D is a d-system satisfying conditions in ??.

The above theorem applies to finite measures (u such that (E) < oo) only. However,
the theorem can be extended to measures that are o-finite, for which £ = U,y En
where p(E),) < oo.

Question
How to show all sets of a o-algebra £ generated by A has a certain property P?

Answer
Consider set G = {A C E : A has the property P} and have that all elements of A
have the property P.

Method 1: Show that G is a o-algebra, as it then must contain o(A) = £.
Method 2: Show that G is a d-system and pick A s.t. it is a m-system and use ??.

Method 3: Monotone Convergence Theorem, we will see it shortly.

§1.4 Borel measures

Definition 1.11 (Borel Sets)

Let (E, 7) be a Hausdorff topological space. The o-algebra generated by the open
sets of E, i.e. 0(A) where A = {A C E : Aopen}, is called the Borel o-algebra on

E, denoted B(E).
A measure pon (E,B(E)) is called a Borel measure on E.

Members of B(E) are called Borel sets.

Notation. We write B = B(R).

Definition 1.12 (Radon Measure)
A Radon measure is a Borel measure p on E such that u(K) < oo forall K C E
compact.

12



Note that in a Hausdorff space, compact sets are closed and hence measurable.

Definition 1.13 (Probability Measure)

If w(E) = 1, p is called a probability measure on E, and (E, £, p) is called a prob-
ability space, typically denoted instead by (2, F, P).

Definition 1.14 (Finite Measure)

If 4(E) < oo, pis a finite measure on E.

Definition 1.15 (o-Finite Measure)

If 3 countable sequence E,, € £ s.t. u(Ey) < oo Vnand E = |J,, E,, then p is called
a o-finite measure.

Remark 9. Arguments that hold for finite measures can usually be extended to o-finite
measures.

§1.5 Lebesgue measure

One of the main goals for this course is to define a notion of volume for arbitrary sets, we
can do this by constructing a Borel measure z on B(R?) s.t u (Hle(ai, bz)) =TI, (b; —
a;) where a; < b; corresponding to the usual notion of volume of rectangles.

Initially, we will perform this construction for d = 1, and later we will consider product
measures to extend this to higher dimensions.

Theorem 1.3 (Construction of the Lebesgue Measure)

There exists a unique Borel measure p on R such that
a<b = u((ab])=b-a (1)

p is called the Lebesgue measure on R.

Proof. First we shall prove the existence of the measure and then uniqueness.

Consider the ring A of finite unions of disjoint intervals” of the form
A= (al,bl] U---u (an,bn]

where a; < b; <ag <--- < ay < b,. Note that 0(A) = B (see Example Sheets").

13



Define for each A € A

n

n(A) = 3 (b — ar).

i=1
This agrees with () for (a, b]. This is additive and well-defined (check).

So, the existence of 1 on o(A) = B follows from ?? if we can show that y is countably
additive on A.

Remark 10. Suppose p a finitely additive set function on a ring .A. Then p is count-
ably additive iff

o Ayt A Ay, A€ A = p(Ad) 1T u(A).
e In addition, if y is finite and A,, | As.t. A,, A € Athen u(A,) | p(A)".

Note, these conditions are both iff separately. See Sheet 1 for proof.

So showing 1. is countably additive on A is equivalent to showing the following
If A, € A A, | @then u(A,) | 0. As A1 O Ay DO ... we can consider y restricted
to A; which is finite, as A; a finite union of finite disjoint intervals.’

We shall prove this by contradiction.

Suppose this is not the case, so there exist ¢ > 0 and B,, € A such that B,, | @ but
p(By,) > 2¢ for infinitely many » (and so wlog for all n).

We can approximate B,, from within by a sequence C,/ € As.t. C,, C B, and u(B,,\
Cp) < g/2". Suppose B,, = Uf-i"l(ani,bm], then define C,, = vaznl(ani + %,bm].
Note that the C), lie in A, and u(B,, \ Cp,) < 27 "¢. Since B,, is decreasing, we have
By =,<n Bn, and

By \(CiNn---NCN)=B,N UCE :UBN\Cng UBn\Cn
n<N n<N n<N
Since (1 is increasing and finitely additive and thus subadditive on A,

n<N n<N n<N

Since p(By) > 2¢, additivity implies that 4(C; N --- N Cxy) > e. This means that
CiN---NCy cannot be empty. We can add the left endpoints of the intervals, giving
Ky =Cin---NCn # @. By Analysis I, Ky is a nested sequence of bounded
nonempty closed intervals and therefore there is a point # € R such that x € Ky

14



for all Né. But Ky € Cy C By, so z € (\y Bn, which is a contradiction since
Ny By is empty. Therefore, a measure p on B exists.

Now we prove uniqueness. Suppose i, A are measures such that the measure of an
interval (a, b] is b — a. We define truncated measures for A € B

pn(A) = p (AN (n,n+1))
A(A)=A(AN(n,n+ 1))

Then py,, A, are probability measures on B and 1, = A, on the 7-system of intervals
of the form (a,b] with a < b". This n-system generates B, so by the uniqueness
theorem for finite measures (??) u, = A\, on B. Hence VA € B

u(A) =pu (UAﬁ(n,n—i-l])

— Z,u(Aﬂ(n,n—i—l])

neL

= Z Mn(A)

neL

= M(A) == MA)

nez

“We take semi intervals as for A to be a ring, we require the set difference to be in A.

"as all open intervals are in o(.A) and open intervals generate open sets

‘increasing sequence tending to A

‘E.g. let A,, = [n, c0) with the Lebesgue measure then A, | @. But u(A,) = oo whilst (@) = 0

‘We are actually using, if 4 finitely additive on a ring .A. Then p is countably additive iff A, |
@, (A1) < co = p(An) L0.

fC’,, means the closure of C,, i.e. make it a closed set by including the left endpoint.

8As completeness of R implies (), Ky is closed and non empty.

"As (a,b] N (¢,d] = @ or (e, f].

Definition 1.16 (Lebesgue Null Set)

A Borel set B € B is called a Lebesgue null set if A\(B) = 0 where ) is the Lebesgue
measure.

Remark 11. A singleton {z} can be written as (), (x -1 x}, hence A(z) = lim, + = 0.
Hence singletons are null sets. In particular, A((a,b)) = A((a,b]) = A([a,b)) = A([a,b]).
Any countable set Q = |J, {¢} is anull set. Not all null sets are countable; the Cantor set
is an example.

The Lebesgue measure is translation-invariant. Let x € R, then the set B + = =
{b+z:b€ B} liesin B iff B € B, and in this case, it satisfies A\(B + z) = A(B). We

15



can define the translated Lebesgue measure \;(B) = A(B + z) for all B € B, then
Az((a,b]) = AM(a,b]+z) = AM(a+x,b+z]) =b—a = A((a,b]). So A, = X on the 7-system
of intervals and so A, = X on the sigma algebra B (i.e. VB € B,A\(B + z) = A\(B)).

Question

Is the Lebesgue measure the only such translation invariant measure on 3?

Carathéodory’s theorem extends A from A to not just o(A) = B, but actually to M, the
set of outer-measurable sets M O B, but how large is M?

The class of outer measurable sets M used in Carathéodory’s extension theorem is here
called the class of Lebesgue measurable sets. This class, the Lebesgue o-algebra, can
be shown to be

M={AUN:AeB,NCB,BeBAB)=0}28B

§1.6 Existence of non-measurable sets

We now show that B C P(R) (in fact M;e, C P(R)).

Consider E = [0, 1) with addition defined modulo one. By the same argument as before,
the Lebesgue measure is translation-invariant modulo one. Consider the subgroup @ =
ENQof (E,+). Wedefinex ~ yforz,y € Eif t —y € Q. Assuming the axiom of choice
(uncountable version), we can select a representative from each equivalence class, and
denote by S the set of such representatives. We shall show that S ¢ B.

We can partition £ into the union of its cosets, so F' = J (S +¢) isa disjoint! union.

Suppose S is a Borel set. Then S + ¢ is also a Borel set”. Therefore by translation invari-
ance of A and by countable additivity,

A<[0,1>>:1=A(U<s+q>) = S AS+a) = A

q€eQ q€Q q€Q

But no value for A(S) € [0, oo] can be assigned to make this equation hold. Therefore S
is not a Borel set.

Remark 12. We can extend this proof to show that S ¢ M.

One can further show that A cannot be extended to all subsets P(E).

1Suppose s1+q1 = s2 + g2 then s1 — s2 = g1 — g2 € Qbut then s1, s2 € S by definition 7.
*Consider G = {B € B : B + x € B} we can show this is a 7-algebra, see ??.
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Theorem 1.4 (Banach - Kuratowski)
Assuming the continuum hypothesis, there exists no measure p on the set P([0,1))

such that ([0,1)) = 1 and u({z}) = 0 for z € [0,1).

Henceforth, whenever we are on a metric space F, we will work with B(E), which will

be perfectly satisfactory.

§1.7 Probability spaces

Definition 1.17
If a measure space (E, £, i) has u(E) = 1, we call it a probability space, and instead

write (2, F,P). We call 2 the outcome space or sample space, F the set of events,

and PP the probability measure.

The axioms of probability theory (Kolmogorov, 1933), are

1. P(Q) =1,P(@)=0;
2.0<P(E)<1forall E € F;
3. if A, are a disjoint sequence of events in F, then P (U,, 4») = >, P (4,).

This is exactly what is required by our definition: [P is a measure on a o-algebra.

Remark 13.
o P(U,A,) <>, P(A4,) for all sequences A,, € F;

o A, 1A = P(A,) TP(A);
o A, | A = P(A,) | P(A) as P a finite measure.

This definition is what separates probability from analysis.

Definition 1.18 (Independent)
Events (A;,i € I), A; € F are independent if for all finite J C I, we have

Pl 4] =1]P4y).
jeJ jeJ
o-algebras (A;,i € I), A; C F are independent if for any A; € A;, where J C [ is

finite, the A; are independent.
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Kolmogorov showed that these definitions are sufficient to derive the law of large num-
bers.

Proposition 1.3
Let A;, Ay be m-systems of sets in F. Suppose P (A; N Az) = P (A1) P (As) for all

Ay € Ay, Ay € Ay. Then the o-algebras o (A1), 0(Az) are independent.
Proof. Fix A; € A;, and define for all A € o(As).
u(4) = P(41 1 A), v(4) = P(41)P(A),

Then p, v are finite measures and they agree on the 7-system A;. Hence by ??,
n(A) =v(A) VA € 0(Ag),ie. P(A1 NA) =P(A41)P(A) VA, € A1, Az € 0(Az).

Now repeat same argument, but now by fixing As € o(As) define forall A € o(A;)
W (A) =P(AN Ay), V' (A) = P(A)P(Ay).

Then 1/, are finite measures and they agree on the 7-system 4;. Hence by ??,
W(A) =V (A) VA € 0(A1),ie P(A1 NA) =P(A;)P(A) VA1 € 0(A1), Az € o(Ag).

O

This follows by uniqueness.

§1.8 Borel-Cantelli lemmas

Definition 1.19

Let A, € F be a sequence of events. Then the limit superior of A, is

limsup A,, = ﬂ U Ay, = {4, infinitely often }"

n m>n

The limit inferior of A,, is

limninf A, = U ﬂ Am = {An eventually}b

n m>n

“Consider w, if w € limsup,, A, then Vn,w € |J, .. Am thus w must be in an infinite number of
Aps. B

by is in all but finitely many A,.

Lemma 1.2 (First Borel-Cantelli lemma)

18



Let A, € F be a sequence of events such that ), P(4,) < oo. Then
P (A,, infinitely often) = 0.

Proof. For all n, we have

P(limnsupAn) :P(ﬂ U Am) gP(U Am) <TY P(An) =0

n m>n m>n

"By countable subadditivity

This proof did not require that P be a probability measure, just that it is a measure.
Therefore, we can use this for arbitrary measures.

Lemma 1.3 (Second Borel-Cantelli lemma)

Let A, € F be a sequence of independent events with >, P(A,) = oo. Then
P (A, infinitely often) = 1.

Proof. By independence, for all N > n € Nand using 1 —a < e™%, we find

N N N R
P ( N Afn> = JI @ =P(4n) < [ e T = = Zm=nFl4m)

As N — oo, this approaches zero.

Since NY_, A¢, decreases to N>°_, AS, P(NX_, AS) = 0 as P(N>_, AS)
N & - P(Am) . 0o

P (ﬂm:n Am> < e Zum=n" ) — 0. So by taking complements P(U;._,, An)

1 Vn (1).

Let B, = Up,—,, Am, Bn decreasing and so By, | N, Bn = N, Upsn Am = { A, 1.0}

As P(B,,) = 1 by (1), P({A, i.0}) = lim, . P(B,) = 1 as probabilities are a finite
measure. [

A, occurs infinitely often
"Recall the equivalent condition to countable additivity given in the proof of 22.

Remark 14. If A, independent, then {A,, i.0} has either probability 0 or 1 and is called a
“tail event”. Kolmogorov 0-1 law shows this is true for all “tail events”.
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§2 Measurable Functions

§2.1 Definition

Definition 2.1 (Measurable)

Let (E,€), (G, G) be measurable spaces. A function f: E — G is called measurable
if f71(A) € EVA € G, where f~!(A) is the preimage of A under f ie. f~1(A4) =
{reFE: f(x) e A}

If G =Rand G = B, we can just say that f: (E,£) — G is measurable. Moreover, if E is
a topological space and £ = B(E), we say f is Borel measurable.

Note that preimages f~! commute with many set operations such as intersection, union,
and complement. This implies that { f~*(A) : A € G} isa o-algebra over E, and likewise,
{A: f71(A) € €} is a o-algebra over G. Hence, if A is a collection of subsets s.t. G D
o(A) then if f~1(A) € £ forall A € A, the class {A: f71(A) € £} is a o-algebra that
contains A and so o(A). So f is measurable.

If f: (E,€) — R, the collection A = {(—00,y]: y € R} generates B (Sheet 1). Hence f is
Borel measurable iff f~!((—co,y]) = {z € E: f(x) <y} € Eforally € R.

If F is a topological space and £ = B(E), thenif f: E — R is continuous, the preimages
of open sets B are open, and hence Borel sets. The open sets in R generate the o-algebra
B. Hence, continuous functions to the real line are measurable.

Example 2.1

Consider the indicator function 14 of aset A ¢ E. 1;'(1) = A and 1'(0) = A°
hence measurable iff A € £.

Example 2.2

The composition of measurable functions is measurable. Note that given a collection
of maps {fi: E — (G,G) : i € I}, we can make them all measurable by taking £ to

be a large enough o-algebra, for instance a({ ffHA):AegGiel }) called the o-
algebra generated by { f; }icr.

Proposition 2.1

If fi1, fa,... are measurable R-valued. Then f; + fs, fi fo, inf,, f,, sup,, fn, liminf f,,
lim sup f;, are all measurable.

Proof. See Sheet 1. O
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§2.2 Monotone Class Theorem

Theorem 2.1 (Monotone Class Theorem)

Let (E, £) be a measurable space and A be a 7-system that generates the o-algebra
E. Let V be a vector space of bounded maps from E to R s.t.

1. 1g €V,
2. 14eVforall Aec A

3. if f isbounded and f,, € V are nonnegative functions that form an increasing
sequence that converge pointwise to f on F, then f € V.

Then V contains all bounded measurable functions f: E — R.

Proof. DefineD = {A € £:14 € V}. ThenDisad-systemas 1y € Vandfor A C B,
1B\A =1p—14 € VasV avector spaceso B\ A € D.

If A,, € D increases to A, we have 1,4, increases pointwise to 14, which lies in V by
the (3.) so A € D.

D contains A by (2.). So by Dynkin’s lemma D contains (A) = £so £ = D ie.
1lyeVVAeE.

Since V' a vector space it contains all finite linear combinations of indicators of meas-
urable sets. Let f: £ — R be a bounded measurable function, which we will as-
sume at first is nonnegative. We define

= 2_”21/4%]. (z)
j=0
An,j - {.CL‘ : 2nf<$) .G [j:] + 1)}
()

As f is bounded we do not need an infinite sum but only a finite one. Then f,, <
f<fn+2" Hencel|f,— f|<2™"™ —=0and f, T f.

So0 < f, T f, fn € Vand f is bounded non-negative so f € V by (3.).

Finally, for any f bounded and measurable, f = f™* — f=". f* f~ are bounded,
nonnegative and measurable, so in V and V a vector space thus f € V. O

max(f, 0)
bmax(—f, 0)
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§2.3 Image Measures

Definition 2.2 (Image Measure)

Let f: (E,&) — (G, G) be a measurable function and i a measure on (E, ). Then
the image measure v = p0 f ! is obtained from assigning v(A) = u(f~1(A)) for all
Aeg.

Remark 15. This is well defined as f~!(A) € £ as f measurable. v is countably additive
because the preimage satisfies set operations and ;. countably additive (See Sheet 1).

Starting from the Lebesgue measure, we can get all probability measures (in fact we can
get all Radon measures) in this way.

Definition 2.3 (Right-Continuous)
A function f is right-continuous if z,, | + = f(z,) — f(x).

Lemma 2.1

Let g: R — R be a non-constant, increasing, right-continuous function, and set
g(F£oo) = lim, y1009(2). On I = (g(—00),g(+00)) we define the generalised in-
verse f : I — Rby

f(z) = inf{y e R:g(y) > z}.

Then f is increasing, left-continuous, and f(z) < yiffx < g(y) forallz € I,y € R.

Remark 16. f and g form a Galois connection.

Proof. Fixz € I.

Let J, = {y € R: g(y) > z}. Since x > g(—0o0), J; is nonempty and bounded below.
Hence f(z) is a well-defined real number.

If y € J,, theny > y implies ¢/ € J, since g is increasing. Since g is right-
continuous, if y, | y, and all y,, € J,, then g(y) = lim, g(y,) > xzsoy € J,.

So J, = [f(x),0). Hence f(z) <y <= x < g(y) as required.

If v <2/,wehave J, O Jy (asy € J, <=y € J,), ie. [f(z),00) D [f(z'),00) so

f(z) < f(2).
Similarly, if x,, T x, we have J, =, Jz,," so [f(z),o0) = N,[f(zn),o0) so f(z,) —
f(x)as z, — x. O

‘Asy e, Jon <= 9(y) > 2nVn <= g(y) >z < Yy € Ju.

Theorem 2.2
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Let g: R — R as in the previous lemma. Then 3 a unique Radon measure 1, on R
such that 4((a, b)) = g(b) — g(a) for all a < b. Further, all Radon measures on R can
be obtained in this way.

Proof. Define I, f as in the previous lemma and A the Lebesgue measure on /.

fisBorel measurablesince f ! ((—o0,z2]) = {x € I: f(z) <z} ={z e l:2<g(2)} =
(—g(00),g(2)] € B. As {(—o0, 2] : z € R} generate B, f measurable.

Therefore, the image measure p, = Ao f~! exists on B. Then for any —oo < a <
b < oo, we have

Ho((a,8) = A (£ ((a, 1))
= A({z: a < f(z) < FO)})
=\ ({z: g(a) <z < g(b)})
= g(b) - g(a)

By the ?? for o-finite measures, 11, is uniquely defined.

Conversely, let v be a Radon measure on R. Define g : R — R as

[v(0y)  ify>0
g(y)_{—u«y,m) ify <0

v Radon tells us that ¢(y) is finite for all y so g : R — R. Easy to check g is right-
continuous”’. This is an increasing function in y, since v is a measure. Finally,
v((a,b]) = g(b) — g(a) which can be seen by case analysis and additivity of the
measure v. By uniqueness as before, this characterises v in its entirety. O

“For y» | y wherey > 0, (0,yn] { (0,y] and then v((0,y»]) I v((0,y]) by countably additivity.
Similarly for y < 0.

Remark 17. Such image measures 1, are called Lebesgue-Stieltjes measures associated
with g, where g is the Stieltjes distribution.

Example 2.3
Fix x € R and take g = 1|, o). Then u, = d, the dirac measure at x defined for all

0 otherwise

§2.4 Random variables
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Definition 2.4 (Random Variable)

Let (2, F,P) be a probability space, and (E, £) be a measurable space. If X : Q@ — E
a measurable function then X is a random variable in .

When E = R or R? with the Borel o-algebra, we simply call X a random variable or
random vector.

Example 2.4

X models a “random” outcome of an experiment, e.g. when tossing a coin 2 =
{H,T},X =#heads : Q — {0,1}.

Definition 2.5 (Distribution)

The law or distribution ;1 x of a random variable X is given by the image measure
px = Po X1 Itis a measure on (E,&).

When (E, &) = (R, B), pux is uniquely determined by its values on any 7-system, we
shall take {(—o0,z] : x € R} and
Fi(2) = px (=00, 2]) = P(X (=00, 2]) = P({w € ©: X(w) < 2}) = P(X < 2)

The function Fx is called the distribution function of X, because it uniquely de-
termines the distribution of X.

Using the properties of measures, we can show that any distribution function satisfies:

1. Fx is increasing;

2. F is right-continuous’;
3. Fx(—o0) =lim,,_o Fx(z) = ux(@) =0;

4. Fx(00) =lim, o0 Fx(2) = ux(R) =P (Q) = 1.

Proposition 2.2

Given any function F' satisfying the previous properties, 3 a random variable X s.t.
F = Fx.

Proof. Let Q= (0,1), F = B(0,1), P the Lebesgue measure A| ;).
Let F' be any function satisfying the properties, then F' is increasing and right con-

*2n & = (—00,,] } (—o0, ] hence by countable additivity of Po X '
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tinuous so we can define the generalised inverse
X(w)=inf{r:w<F(z)}:(0,1) > R

Hence X is a measurable function and thus a random variable.

Fx(z)=P(X <z)=P{we: X(w)<z})=P{weQ:w<F(z)})
=P{we (0,1):w < F(x)})
=P((0, F(2)])
=F(z)-0

O]

Remark 18. This is similar to what we saw in IB Probability, if we have F thenr.v. F~1(U)
where U ~ U(0, 1) has the distribution function F, where F'~ is the generalised inverse.

Definition 2.6 (Independent)

Consider a countable collection (X;: (2, F,P) — (E,&)) for i € I. This collection
of random variables is called independent if the o-algebras o(.X;) are independent,

recall o(X;) is generated by {Xi_ 1(A): Ac¢ }, the smallest o-algebra s.t. X; meas-
urable.

For (E,€) = (R, B) we show on an Sheet 1 that this is equivalent to the condition

for all finite subsets { X1, ..., X,,} of the Xj.

§2.5 Constructing independent random variables

Question
Given a distribution function F', we know 3 a r.v. X corresponding to it. But
given an infinite sequence of distribution functions Fi, F5, ... does 3 independent

r.v. (X1, Xs,...) corresponding to them?

Let (€2, 7,P) = ((0,1), B(0,1), Alg ). We start with Bernoulli random variables.
Any w € (0, 1) has a binary representation given by (w;) € {0, 1N wherew = 320, 27w,

which is unique if we exclude infinitely long tails of zeroes from the binary representa-
tion (same reasoning as 1.00000. .. = 0.99999...).
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Definition 2.7 (nth Rademacher function)

The nth Rademacher function R,, : Q — {0,1} is given by R,,(w) = wy, it extracts
the nth bit from the binary expansion.

Observe that Ry = 1(1 2,1}, R2 = 1(1/4,1/2] T 1(3/4,1] and so on. Since each R,, can be given
as the sum of finite (2"~!) indicator functions on measurable sets, they are measurable
functions and are hence random variables.

Claim 2.1
R; areiid Ber(3).

Proof. P(R,, =1) = 1 = P(R, = 0) can be checked by induction.

We now show they are independent. For a finite set (x;);-;, by considering the size
of the intervals that w can lie in,

P(Ri=xz1,...,Rp=2p)=2""=P(R1 =x1)...P(R, = zp)

O

Therefore, the R,, are all independent, so countable sequences of independent random
variables indeed exist.
The next step is to construct a sequence of iid r.v.s on U(0, 1).

Now, take a bijection m: N? — N and define Ykn = Ry(k,n), the Rademacher functions.
We now define Y,, = > 72, 2_"“Yk7n4.

Lemma 2.2

Any measurable functions of independent random variables are independent.

Claim 2.2
Y, areiid U(0,1), i.e. py, = )\|(0,1) and Y,, independent.

Proof. They are independent because the Y; are measurable functions of inde-
pendent random variables, e.g. Y] is a measurable function of Y7 1,Y21,...; Y2 of
Yio,Ya2,...

The 7-system of intervals (2%1, Z;“—ml} fori =0,...,2™ —1form € N generates 5(0, 1)

*This converges for all w € § since |Y | < 1.
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as Q dense in R. So by ?? the distribution of Y, is identified on the intervals.

i i+1 i ok i+1
P(“€<wwwnbzﬂ(wn<§? “w§2n>”
=1

i
P(Yin =y1,- -, Yo = ym) where o0 = 09192 . ym

)

[
—3 =

P(Y,.n = ym) by independence.
1

_ A |
Qm:A(wwgm}

Hence py,, = Al ;) on the 7-system and so on 5(0, 1). O

<.
Il

"This specifies the first m digits in the binary expansion of Y,,.

As before, set G,,(r) = F, !(z) which is the generalised inverse. Then G,, are Borel
functions, set X,, = G, (Y, ) for n € N, then as before Fx, = F;, and X,, are independent
as Y, are.

§2.6 Convergence of measurable functions

Let (E, &, 1) be a measure space. Let A € £ be defined by some property.

Definition 2.8 (Almost Everywhere)
We say that a property defining a set A € £ holds p-almost everywhere if 11(A¢) = 0.

Definition 2.9 (Almost surely)

If 11 is a P- measure, we say a property holds P-almost surely or with probability
one, if P(A°) =0, i.e. if P(A) =

Definition 2.10 (Convergence Almost Everywhere)

If f, and f are measurable functions on (£, &, 1) — (R, B), we say f,, converges to
f u-almost everywhere if u({z € E : f,(z) » f(z)}) =

For r.v.s, we say X,, — X P-almost surely if P{w € @ : X,,(w) = X(w)}) = 1.

Definition 2.11 (Convergence in Measure)
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We say f,, converges to f in y-measure if foralle > 0

p{z € E: |fu(z) — f(2)| > €}) =0,
asn — oo.
We say X,, = X in P-probability if Ve > 0
P(| X, —X|>¢e)—0

as n — oQ.

Theorem 2.3
Let f,,: (E, &, u) — R be measurable functions.

1. If u(F) < oo, then f,, - 0a.e. = f, — 0in measure;

2. If f,, = 0in measure, 3 subsequence ny s.t. f,, — 0a.e.

Proof. Fix e > 0. Suppose f, — 0 a.e., then for every n,

u(|fal <€) > u( N {lfml < e})

m>n

Let A, = Ny>n 1lfml < €} which is increasing to U, ;> {fm| < €}. So by the
countable additivity of s,

m>n n m>n

u( M {l/ml <6}> —>M<U M {lfml < 6})

(| fn] < € eventually)

1
> (| fnl — 0)
u(E) as fp, — 0a.e. and p finite.

Hence,

m pu(|fn] <€) = w(E) = p(lfn] >€) =0

n—00
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Proof. Suppose f,, — 0 in measure, choosing ¢ = ; we have
1
ﬂ(]fn\ > k) 0.

So we can choose ny, s.t. u(]fnk\ > %) < 1%2 We can choose nj41 in the same way
s.t. ng+1 > ng. So we get a subsequence ny s.t. ,u(|fnk] > %) < k% Also Y k% < 00,

SO > (\ frel > %) < 0. So by the first Borel-Cantelli lemma, we have

1
pl [ frl > z infinitely often | = 0

so fn, — O a.e. [

Remark 19. The first statement is false if p( E) is infinite: consider f,, = 1, o) on (R, B, ),
since f, — 0 a.e. but u(|f,| > ¢) = oo Vn.

The second statement is false if we do not restrict to subsequences: consider in-
dependent events A,, such that P(A4,) = %, then 14, — 0 in probability since
P(1a, >¢) =P(A,) = % — 0, but ), P(A,,) = oo, and by the second Borel-Cantelli

lemma, P (14,, > ¢ infinitely often) = 1, so 14, - 0 almost surely.

Definition 2.12 (Convergence in Distribution)

For X and X, a sequence of r.v.s, we say X, 4 X0 if Fx, (t) = Fx(t) asn — oo for
all ¢ € R which are continuity points of Fx.

"X, converges to X in distribution

Remark 20. This definition does not require X, to be defined on the same probability
space.

Remark 21. If X,, — X in probability, then X, 4 x , see Sheet 2 for proof.

Example 2.5
Let (X,,)nen be iid Exp(1),ie. P(X,, > z) = e * for z > 0.

Question

Find a deterministic fcn g : N — R s.t. a.s. lim sup g)((;) = 1.

29



Define A, = {X,, > alogn} where & > 0, so P(4,) = n~%, and in particular,
> P(An) < oo if and only if v > 1. By the Borel-Cantelli lemmas, we have for all
e >0,

X
P ( L | infinitely often
logn

N——

X
=1, P ( " > 1+ ¢ infinitely often) =0
logn

In other words, P(lim sup,, ngn =) =1

§2.7 Kolmogorov’s zero-one law

Definition 2.13 (Tail o-Algebra)

Let (X, )nen be a sequence of r.v.s. We can define 7,, = o(X,41, Xpt2,...)" Let
T = Npen Tn be the tail o-algebra, which contains all events in F that depend only
on the ‘limiting behaviour” of (X,,).

"The smallest o-algebra s.t. X;,11,... are measurable.

Theorem 2.4 (Kolmogorov 0-1 Law)

Let (X,,)nen be a sequence of independent r.v.s. Let A € T be an event in the tail
o-algebra. Then P (A) =1orP(A) = 0.

IfY: (Q,7)— (R, B) is measurable, it is constant almost surely.

Proof. Let F,, = o(X1,...,Xy,). Then F, is generated by the 7-system of sets A =
(X1 <zp,..., X, <zyp) forany z; € R.

Note that the 7-system of sets B = (Xp1+1 < Zp+1,- .., Xntk < Tntk), for arbitrary
k € Nand z; € R, generates 7,,.

By independence of the sequence, we see that P (AN B) = P (A) P (B) for all such
sets A, B, and so the o-algebras 7,,, F,, generated by these w-systems are independ-
ent. AsT C 7T,, F, and T are independent Vn.

Let Foo = 0(X1, X2,...). Then, lJ,, 7y, is a m-system that generates F,. As F,, and
T are independent Vn, J,, F,, independent of 7. So F,, T are independent.

Since T C Fo, if A € T, Ais independent from A € F.. SOP(A) =P(ANA) =
P(A)P(A),soP(A)* —P(A) = 0 as required.

Finally, if Y: (2, 7) — (R, B) measurable, the preimages of {Y < y} liein 7, which
give probability one or zero. Let ¢ = inf {y : Fy(y) = 1},s0Y = calmost surely. [

Remark 22. This tells us that for X; iid with finite expectation, lim inf, % Yo Xi,
lim sup,,_,o = I, X; are constants a.s.
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§3 Integration

§3.1 Notation
Let f: (E,&, 1) — R be measurable and f > 0°.

Notation. We will then define the integral with respect to y, either written p(f) or
Jg fdp = [p f(z)du(z).
When (E, &, n) = (R, B, \), we write it as [ f(x)dx.

Notation. If X is a random variable, we will define its expectation E [X] = [, X dP =
Jo X () dP(w).

§3.2 Definition

Definition 3.1 (Simple)
We say that a function f: (E, &, u) — R is simple if it is of the form

m
f:ZaklAk; ap >0; Ap €& meN
k=1

Definition 3.2 (u-integral)

The p-integral of a simple function f defined as above is

p(f) = i app(Ag)”
k=1

which is independent of the choice of representation of the simple function, i.e. well-
defined.

“Note we take 0 - co = 0.

Remark 23.

e We have p(af + Bg) = au(f) + Bu(g) for all nonnegative coefficients «, 5 and
simple functions f, g.

o If g < f, u(g) < pu(f), so uis increasing.
e f=0ae <= u(f)=0.

® f is measurable when mapped to R and f > 0, this is different from saying f non-negative, measurable.
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Definition 3.3 (u-integral)
For a general non-negative function f: (E, €&, u) — R, we define its p-integral to be

p(f) =sup{u(g) : g < f, g simple}

which agrees with the above definition for simple functions.

Clearly if 0 < f; < fa then u(f1) < p(fa2).

Now, for f: (E, &, u) — R measurable but not necessarily non-negative, we define f* =
max(f,0)and f~ = max(—f,0),sothat f = f* — f~and |f| = f* + f.

Definition 3.4 (u-integrable)

A measurable function f: (E, &, u) — R is p-integrable if u(|f|) < co. In this case,
we define its integral to be

u(f) = p(f*) = u(f)

which is a well-defined real number.

Later we shall prove that u(|f]) = u(f™) + u(f~) hence |u(f)] < u(|f]).

If one of u(f) or u(f ™) is oo and the other finite, we define p( f) to be oo or —oc respect-
ively (though f is not integrable).

§3.3 Monotone Convergence Theorem

Notation.

e Wesay z,, T« to mean z,, < zp,41 Vn and z,, — z.

e Wesay f, T f tomean f,,(z) < fr+1(z) Ynand f,(z) — f.

Theorem 3.1 (Monotone Convergence Theorem)
Let f,, f: (E,&, 1) — R be measurable and non-negative s.t. f, T f. Then, u(f,) 1
u(f)-

Remark 24. This is a theorem that allows us to interchange a pair of limits, u(f) =
p(limy, fr,) = lim, p(fyn), ie. lim, [ f, dp = [lim, f, du for f,, > 0and f, 1 f.

If g, > 0, letting f, = > p_jgrand fn, T f = Y7o gx we get lim, [ > 7 grdpu =
JXZigedp = 3502 [ grdp = [ 224 gk dp or equivalently p(3o5 k) = 3o 1(9k)-
This generalises the countable additivity of 4 to integrals of non-negative functions.
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If we consider the approximating sequence f,, = 272" f], as defined in the monotone
class theorem, then this is a non-negative sequence converging to f. So in particular,
w(f) is equal to the limit of the integrals of these simple functions.

It suffices to require convergence of f,, — f a.e., the general argument does not need to
change. The non-negativity constraint is not required if the first term in the sequence fj
is integrable, by subtracting f, from every term.

Proof. Recall that p(f) = sup{u(g): g < f,gsimple}. Let M = sup, pu(f,), then

We now show M = p(f).

Since f, < f, u(fn) < pu(f), so taking suprema, M < pu(f).

Now, we need to show u(f) < M, or equivalently, ;1(g) < M for all simple g s.t.
g < f, so by taking suprema, pu(f) = sup, p(g) < M.

Now let g = >"/*; axla, where a;, > 0 and wlog the Aj;, € £ are disjoint. We define
gn = min(f,, g), where f,, is the nth approximation of f,, by simple functions as in
the ??2. So gy, is simple, g, < f,, < fu 1 f, 50 g» T min(f,g9) = g. Le. g, T g and g,
simple with g,, < f,.

Fix e € (0,1), and define sets Ai(n) = {z € A : gn(x) > (1 — €)ay}. Since g = ay,
on Ay, and since g, T g, Ax(n) T Ay, for all k. Since 11 is a measure, u(Ag(n)) T p(Ax)
by countable additivity.

Also, we have g, 14, > gnla,(n) = (1 — €)agla,(n) as Ag(n) € Ag. So as u(:)
is increasing, we have j(gn,1la,) > u((l - E)szlAk(n)) and so p(gnla,) > (1 —
e)arpi(14,(n)) as they are simple functions.

Finally, g, = >-7—1 gnla, as g, < g and g supported on J;_; A; and A;, disjoint. So
So as g, 14, is simple,

M(gn) = H(i gnlAk>
k=1

> (1 - &)agu(Au(n))
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Then,
(1 —e)ulg) < lim p(gn) < “limp(fn) < M

so u(g) < 1—]\_45 Ve € (0,1) hence u(g) < M. O

“As dn < fn

§3.4 Linearity of Integral

Theorem 3.2 (Linearity of Integral)
Let f,g: (E,&, 1) — R be nonnegative measurable functions. Then Ve, 5 > 0,

o u(af+Bg) = au(f)+ Bu(g);

o f<g = u(f)<ulg)
o f=0ae <= u(f)=0.

Proof. If f,, gy are the approximations of f and g by simple functions from the ??
let f,, = min(ﬁ,n)” and ¢, = min(gy,n). Then f,, g, are simple and f, 1 f and
gn 1 g. Then afy, + Bgn 1 af + Bg, so by MCT’, u(fy) t u(f), 1(gn) 1 p(g) and
w(efn + Bgn) T pwlaf + Bg). As fn, gn simple p(ofn + Bgn) = ap(fn) + Bulgn) T
ap(f) + Bulg). So ap(f) + Bulg) = ulaf + Bg).

The second part is obvious from definition.

If f=0ae then0 < f, < f,so f, = 0a.e. but f,, simple = pu(f,) = 0. As

1(fn) T 1(f) so u(f) = 0.
Conversely, if u(f) = 0, then 0 < u(f,) T u(f) so u(fn) =0Y¥n = f, =0a.e.

Butf, tf = f=0ae 0

“This ensures that f, is not an infinite sum of indicators, as discussed in proof of ?? (we assumed f
bounded).

7?2

Remark 25. Functions such as 1g are integrable and have integral zero. They are ‘identi-
fied” with the zero element in the theory of integration.

Theorem 3.3 (Linearity of Integral)
Let f,g: (E,&, 1) = R be integrable. Then Ve, 5 € R,

o p(af + Bg) = au(f)+ Bulg);
o f<g = u(f) <ulg);
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o f=0ae = pu(f)=0.

Proof. Left as an exercise, just use f = f* — f~ and use definitions and u(f) =
u(f+) - p(f) ete. =

§3.5 Fatou’s lemma

Example 3.1
Let fr, = 1(nnt1), fn > 0 with f, = 0asn — oo. A(fn) = 1but A(0) = 0.

Lemma 3.1 (Fatou's lemma)
Let f,,: (E, &, 1) — R be measurable, non-negative functions. Then p(lim inf,, f,,) <
lim inf,, p(fy).

Remark 26. Recall that lim inf,, ,, = sup,, inf,;,>, z,, and lim sup,, =, = inf,, sup,,>,, Tm.
In particular, limsup,, z, = liminf, z, implies that lim, x, exists and is eq1_1a1 to
lim sup,, z,, and lim inf,, z,,. Hence, if the f,, converge to some measurable function f,
we must have p(f) < liminf,, u(f,).

Proof. We have inf,,,>,, fn, < fi for all K > n, so by taking integrals, p(inf,,>p fm) <
wu(fx). Thus,

p( nf ) < i () < sup fuf u(f) = limint (o) ()

Note that inf,,,>,, f,, increases to sup,, inf,,>, fr, = liminf,, f,.

Let g, = inf,;,>,, fn, then g, > 0and g, 1 sup,, gn = sup,, inf,;,>, fr, = liminf,, f,. By
MCT p(gn) T p(liminf,, f,,) so by taking limits in (t), p(liminf,, f,,) < liminf pu(f,).
O

§3.6 Dominated Convergence Theorem

Theorem 3.4 (Dominated Convergence Theorem)
Let fp, f: (E, &, 1) be measurable functions s.t. |f,| < g a.e., for some integrable fcn

9,50 1(g) < oo, and f,, — f pointwise (or a.e.) on E.
Then f,, and f are also integrable, and u(f,,) — p(f).

"Note g > |fn]| > 0.
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Proof. Clearly u(|fn]) < p(g) < oo, so the f, are integrable. Taking limitsin | f,,| < g,
we have |f| < g, so f is also integrable by the same argument and as the limit of
measurable fcns is measurable.

Now, g £ f, > 0, and converges pointwise to g = f. Since limits are equal to the
limit inferior when they exist, by Fatou’s lemma, we have

w(g)+u(f) = pulg+f) = M(limninf(g + fn)) < liminf p(g+fn) = p(g)+liminf p(fn)

Hence u(f) < liminf, u(f,) as p(g) finite. Likewise, u(g) — u(f) < wu(g) —
lim sup,, p4(fn), s0 p(f) > limsup,, u(fn), so

lim sup p(fn) < p(f) < liminf p(fn)

But since lim inf,, p(f,,) < lim sup,, x(fr), the result follows. O

Remark 27. In fact, u(|fn — f]) — Oas |fn — f| < |ful +1f] < g+ g = 2g and 2g is
integrable so by DCT (??) proved.

If X;, = X Pas., and | X,| < Y and E[Y] < oo then E[X,,] = E[X]and E[|.X,, — X|] — 0.
In particular, if | X,,| < M Vn, for some M > 0, M € R then E[|X,, — X|] — 0 (Bounded
Convergence Theorem)®.

Remark 28. DCT also holds for convergence in P-prob, where if X,, — X in P probability
then we get E[X,,] — E[X] and E[|X,, — X|] — 0.

Proof. Suppose E[|X,, — X|] /4 0. Then 3 a subsequence ny s.t. E[|X,, — X|] > ¢ Vk
for some € > 0. Now X,, = X in P prob then X,,, — X in P prob by definition. By

22, 3ny, st Xy, — X as. But then by DCT, E[| X,,, — X|| = 04, 0

Theorem 3.5 (Bounded Convergence Theorem)

If X,, - X in P prob and |X,,| < M for some constant M > 0, Vn > 0. Then
E[| X, — X|] — 0.

This is quite useful in probability.

Example 3.2

Let £ = [0,1] with the Lebesgue measure. Let f, — f pointwise and the f,, are
uniformly bounded, so sup,, || fn| ., < g for some g € R. Then since ;(g) = g < oo,
the DCT implies that f,,, f are integrable and u(f,) — p(f) as n — oo.

5This works as with finite measure then E[M] is finite
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In particular, no notion of uniform convergence of the f;, is required as in Riemann
Integrals.

Remark 29. FTC states that

1. Let f : [a,b] — Rbe continuousand set F(t) = [* f(z) dz’. Then F is differentiable
on [a,b] with F' = f.

2. Let F': [a, b] — R be differentiable and F” is continuous, then | f F'(z)dx = F(b)—
F(a).

The proof of the fundamental theorem of calculus requires only the fact that

z+h
/ dt =h

This is a fact which is obviously true of the Riemann integral and also of the Lebesgue
integral.

Therefore, for any continuous function f: [0, 1] — R, we have

[ rwa =r@ = [" 1o due
SN— S——

Riemann integral Lebesgue integral
So these integrals coincide for continuous functions.

Remark 30. We can generalise the FTC for Lebesgue integrals:
If f : [a,b] — R is Lebesgue integrable and F(t) = [! f(x)dx. Then,

o FE+n) —F@) 7 (@) de
h—0 h h—0 h

= f(t) a.e.
This is the Lebesgue differentiation theorem, studied in Analysis of Functions.

Remark 31. We can show that all Riemann integrable functions are p*-measurable,
where p* is the outer measure of the Lebesgue measure, as defined in the proof of
Carathéodory’s theorem. However, there exist certain Riemann integrable functions
that are not Borel measurable. We can modify such an f on a Lebesgue measure 0 set
to make it Borel measurable, i.e. 3f s.t. f = fon Aand A(A°) =0and [ fdz = [ fdz.

A (bounded) Riemann integrable fcn f : [a, b] — R is Lebesgue integrable in the follow-
ing sense. If f is bounded on [a, ], f is R-integrable iff

Ap({x €10,1] : f is discontinuous at z})) = 0,
i.e. f is continuous a.e.

The standard techniques of Riemann integration, such as substitution and integration
by parts, extend to all bounded measurable functions by the monotone class theorem.

"This is a Lebesgue integral
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Example 3.3

1g on [0, 1] is a bounded function on a bounded interval. The set of discontinuity
points is [0, 1] which is not measure 0, thus not Riemann Integrable. But this is
Lebesgue integrable and 1g = 0 A a.s., so A(1g) = 0.

Theorem 3.6 (Substitution Formula)
Let ¢ : [a,b] — R, ¢ strictly increasing and continuously differentiable. Then Vg

Borel fens, g > 0 on [p(a), p(b)], [54) 9(v) dy = [ g(p(2))¢'(2) d (%).

Proof. LetV be the set of all measurable fcns g for which (x) holds. Then by linearity
of integral, V is a vector space.

e 1 € VbyFTC (2), L(e,q € V by FIC (2).
o Iffo,eV, futf fn>0thenby?? feV.
Hence by ??, (x) holds Vg > 0 measurable. O

Theorem 3.7 (Differentiation Under The Integral Sign)

Let U C R be an open set and (E, £, 1) be a measure space. Let f: U x E — R be
s.t.

1. x — f(t, ) is integrable V¢;
2. t— f(t,x) is differentiable Vz € E;
3. Jg : E — R integrable s.t. ‘%ﬂ <glx)Vte U,z e E;

Then z — % is integrable V¢ and,

FO) = [ i) dute) = P = [ 0

Proof. Fix t. By the mean value theorem,

) = LD ZICD Iy oy @) = | L (50) - Z 1) < 2000)

Note that g is integrable. By differentiability of f, we have g, — 0 as h — 0, so by
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DCT, u(gn) — 1(0) = 0. By linearity of the integral,

1(gn) = Jp S+ h’””); [t z)du(z) 7 (?9{

(¢, 2) du(x)

Hence, w — F'(t) — 0. O

Example 3.4 (Integrals and Image Measures.)

For a measurable function f: (E,&, ) — (G,G) with image measure v = po f~!
on (G, Q). If g: G — Ris a measurable, non-negative function then,

pot M@ =v9)= [[gav= [ gauo s = [ g(f(@)du(e) = ulgo 1)

Proof on Sheet 2, use monotone class theorem and first prove for g indicator fcns
and then simple functions.

In particular, for X : (Q, F,P) — Rand X > 0 measurable, we have,

Elg(X0)] = [ o(X()dPw) = [ gdux,

where jix = P o X! is the distribution of X.

Example 3.5 (Densities of Measures)

If f: (E,€, 1) — R is a measurable non-negative function, we can define v(A4) =
u(f14) for any measurable set A, which is again a measure on (£, £) by the ??. For
A, disjoint,

<L_J ) = u(flua,)
Zu(film)
Zu(iflAi)
:iﬂ (f14,) by MCT
i=1

o0

:ZV(A
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In particular, if g: (E,£) — R is measurable, v(g) = u(fg) = [pg(x)f(z)du(z) =
[ 9dv(f). This follows by definition for g indicator functions, by additivity extends
to simple functions and by ?? to all measurable non-negative functions.

We call f the density of v with respect to p1. This is unique as p(f14) = p(gla) VA €
& = f =g pae. (proved on Sheet 2).

In particular, for 4 = A, Vf Borel 3 a Borel measure v on R given by v(A4) =
J4 f(x)dz and then Vg Borel, g > 0 v(g) = [ f(x)g(x)dz. We say v has density
f. This v is a prob measure on (R, B) iff [ f(z)dz = 1.

For A : (Q,F,P) — R, if the law ux = P o X! has the density fx (wrt
A), we call fx the probability density function of X. Then P(X € A) =
Po X 1(A) = ux(4) = [, fx(z)dz VA € B. Taking A = (—o0,z], we get
P(X <) = Fx(a) = [, fx(a)de.

VgBorel, g > 0,E[g(z)] = [ g(z) dux (z) from previous exampleand [ g(z) dux (z) =
v(g) = [ 9(a)fx () da.
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§4 Product Measures

§4.1 Integration in product spaces

Let (E1, &1, 1), (Ea, £, p2) be finite measure spaces. On E = E; X Ey, we can consider
the m-system of ‘rectangles’ A = {A; x Ay : Ay € &, Ay € ). Then we define the o-
algebra £ = & ® & = o(.A) on the product space.

If the E; are topological spaces with a countable basis, then B(E; x Eq) = B(E;) ® B(E?)
where we take the product topology.

Lemma 4.1

Let f: (E,&) — Rbemeasurable. ThenVz; € Ey,thefen (zo — f(x1,22)): (Eo,&) —
R is £&3-measurable.

Proof. Let
V={f:(F,€) = R: f bounded, measurable, conclusion of the lemma holds}

This is a R-vector space, and 15,14 € VVA = A; x Ay € A, since 14(z1,22) =
14, (21)14,(z2) thus fixing z1 gives 0 or 14,.

Now, let 0 < f, increase to f, f, € V. Then (z2 — f(z1,22)) = lim,(x2 —
fn(z1,22)), so it is Ey-measurable as it’s a limit of a sequence of measurable func-
tions. Then by the ??, V contains all bounded measurable functions. This extends
to all measurable functions by truncating the absolute value of f ton € N, then the
sequence of such bounded truncations converges pointwise to f. O

Lemma 4.2
Let f: (E, &) — R be measurable s.t.

1. fis bounded; or
2. fis nonnegative.

Then the map z; — [ By f(z1,x2) dpa(x2) is u1-measurable and is bounded” or non-
negative respectively.

“As ps is a finite measure.

Remark 32. In case (2), the map on z; may evaluate to infinity, but the set of values

{961 €E: /E2 f(z1,22) dps(x2) = OO}
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liesin &;.
Generally, a fcn f taking values in [0, 0] is measurable means f~!({c}) € & and
YA e & VAEB.
Proof. Let
V={f:(E,€) = R: f bounded, measurable, conclusion of the lemma holds}

This is a vector space by linearity of the integral. 1z € V, since || B 1B (x1,22) dug(ze) =
1k, p2(E?2) is non-negative and bounded. 14 € V VA € A, because 14, (x1)pu2(As2)
is £1-measurable, non-negative, and bounded since it is at most p2(E2) < oo.

Now let f,, be a sequence of non-negative functions that increase to f, where f,, € V.
Then by the ??,

/ lim f,(z1,z2)dpe(xe) = lim frn(x1,29) dpa(z2)
E2 n—oo n—oo E'2

is an increasing limit of £;-measurable functions, so is £;-measurable. It is bounded
by p2(E»)|| f|l ., or non-negative as required. So f € V. By the ??, the result for
bounded functions holds.

O]

Theorem 4.1 (Product Measure)

There Ja unique measure ;1 = 1 ®ug on (E, £) such that (A1 x Az) = p1 (A1) pu2(As2)
forall Ay € &£, Ay € &Es.

Proof. Ais a m-system generating £ and y a finite measure, so by the ??, u unique.

We define for A € &,

MA»:Ah(é;Amhmwmxmﬁdm@m.

This is well-defined by the two previous lemmas.

We have
pldr x Az = [ ([ 1, (@) Lag(o2) dpa(a) ) dps )

:/E La, (w1) p2(Az2) dp (1)
= pu1(A1)p2(As2)
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Clearly u(@) = 0, so it suffices to show countable additivity. Let A,, be disjoint sets
in £. Then

n
LU, 4 = 2 Lan =l )L,

Then by the ?? and the previous lemmas,

O

Remark 33. Note 1(A) = [, (fE1 1a(z1,x2) d,ul(xl)) dua(z2) by just swapping the order
of integration in the previous lemmas and proofs and then by ??.

§4.2 Fubini’'s theorem

Theorem 4.2 (Fubini-Tonelli)
Let (E,&, 1) = (Eq X Ez, & ® &3, 11 ® p2) be a finite measure space.

1. Let f: E — R be measurable, non-negative. Then

u(f)Z/EfdM
= ( f(z1,22) d/u(ivz)) dpa (1)
Er \JE>

= (/El f(a:l,xg)dm(m)) dpz(72)
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2. Let f: E — R be a p-integrable function (on the product measure). Let

A= {xl € Er: /E2 |f(z1, 22)| dpa(x2) < oo}.

Define f; : E1 — R by fi(z1) fE2 (z1,22) dua(z2) on A; and 0 elsewhere.
Then 11 (A§) = 0, f1 is pi-integrable and u(f) = pi(f1) = m(fila,), and
defining Ay symmetrically, u(f) = p2(f2) = p2(fola,).

Remark 34. 1f f is bounded, A; = E;. Note, for f(z1,x2) = (;%;523)2 on (0,1)%, we have
1 2

p1(f1) # p2(f2), but f is not Lebesgue integrable on (0, 1)2.

Proof. By the definition of the product measure, first statement is true for f = 14
for A € £. Then, by linearity of the integral, this extends to simple functions.
For general fcn f > 0 by ?? and the standard approximation by simple fens f,, =
min(27"[2"f |, n), the first statement follows.

Now let f be u-integrable. Define h : E1 — [0,00] as h(z1) = [, |f(z1, 22)| dua(w2).
By ??, h is measurable (as | f| > 0), is non-negative, so 4; € &;".

Then by the first part, p1(h) = p(|f|) < oo. So fi is pui-integrable. We have ;1 (A§) =
0, otherwise p1(h) > p1(hlas) = oo .

Setting, fft = ng fE(z1, 29) dpo(x2) we see that f; = (ff — fi)1la,. Also by the
first part, () = p(*) < co.and ju (f7") = u(f~) < oc. Hence, u(f) = "u(f*) -

u(f~) = 1 (f7) — () = i (fr) as required. =
“h measurable => h™!({cc0}) € £1. A1 = A7 ({c0})° thus in &;.
"As f integrable

‘As f1 integrable due to u1(A§) = 0.

Remark 35. The proofs above extend to o-finite measures .

Let (E;, &, pi) be measure spaces with o-finite measures. Note that (£; ® &) ® & =
&1 ® (& ® &3), by a m-system argument using Dynkin’s lemma. So we can iterate the
construction of the product measure to obtain a measure 11 ®- - -® wn®, whichis a unique
measureon ([[;-; E;, Qi &) with the property that the measure of a hypercube (A x
A,) is the product of the measures of its sides y;(A;).

In particular, we have constructed the Lebesgue measure " = Q;—; 1 on R". Applying
Fubini’s theorem, for functions f that are either non-negative and measurable or p."-
integrable, we have

/Rnfd,un :/.../R“.Rf(arl,...,xn)d,u(xl)__.du(xn)

8This is associative.
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§4.3 Product probability spaces and independence

Proposition 4.1

Let Xq,...,X, bervs, X; : (Q,I,P) — (Ez,gz) Set (E,E) = ( ?:1 E;, ?:1 Ez)

Consider X : (2, F,P) — (£, ) given by X (w) = (X1 (w), X2(w), ..., Xp(w)). Then
X is £-measurable and the following are equivalent.

1. Xi,..., X, are independent random variables;
2. px = @iy kx;s
3. for all bounded and measurable f;: E; — R, E ([T~ fi(Xi)] = [Ti=; E [fi(X3)].

Proof. To show X measurable suffices to check X “1(A; x --- x A,) € F, where
A; € &; Vi as this is a m-system generating £.

Xﬁl(Al X oo X An) = {w : Xl(w) € Aq,... ,Xn(w) S An}
= X' (4.
i=1
X; measurable so X; '(4;) € F and so the intersection is in F.

(1) = (2): Consider the 7-system A of rectangles A = [[;-; A; for A; € &;, as
this generates & suffices to check equality on it.

Since p1x is an image measure, then

/Lx(Al X -0 X An) :]P)(Xl S Al,...,Xn S An) :P(Xl)]P(An) = ﬁNXZ<Az)
i=1
= <éNXi> (A)
i=1

(2) = (3): By Fubini’s theorem,

E [ﬁ fi(Xa)| = ux (ﬁ fi(%‘))

i=1 i=1
= [ f@dpx(a)
E
- [/ (H ﬂ(xi)) dpx, (1) .. dpy (22)
Ei \i=1

_ E[l/E fi(zi) dpx, (2;)
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= ﬁE [fi(X)]
i=1

(3) = (1): Let f; = 14, for any A; € &;. These are bounded and measurable
functions. Then

P(Xl c€A,.... X, € An) =E [ﬁ 1A1(Xi)‘| = ﬁE[lAZ(Xz)] = ﬁP(XZ S Ai)
=1 =1 =1

So the o-algebras generated by the X; are independent as required. O
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§5 LP Spaces, Norms and Inequalities

§5.1 Norms

Definition 5.1 (Norm)

A norm on a real vector spaceisamap || - ||;,: V' — [0, 00) s.t.
L (Al = [A] - lvll;
2. lu+ ol < flull + [Jv]l;

3. v =0 <= v=0.

Definition 5.2 (L?)

Let (E, &, 1) be a measure space. We define LP(E, &, u) = LP(p) = LP for the space
of measurable functions f: E — Rs.t. | f[|, is finite, where

171 = J UslF@P du)s 1<p<o
P esssup |[f| =inf{A>0:|f| < Ap-ae} p=o0

We must check that || - ||, as defined is a norm.

Clearly (1) holds for all 1 < p < oo by linearity of integral and for p = oo its obvious.
Property (2) holds for p = 1 and p = oo, and we will prove later that this holds for other
values of p by Minkowski inequality.

The last property does not hold: f = 0 implies || f[|, = 0, but || f||, = 0 implies only that
|f|P =0a.e., so fis zero a.e. on E.

Therefore, to rigorously define the norm, we must construct the quotient space £? of
functions that coincide a.e.. We write [f] for the equivalence class of functions that are
equal a.e. The functional | - [/, is then a norm on £ = {[f] : f € LP}.

Proposition 5.1 (Chebyshev's Inequality, Markov's Inequality)
Let f: E'— R be non-negative and measurable. Then VA > 0,

plfe € B: f(a) 2 ) = (7 2 %) < 29
Proof. Integrate the inequality A1;;>,y < f, which holds on E. O

Remark 36. Let f(x) = (z — p)? to obtain Chebyshev’s Inequality.
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In particular if g € LP, p < oo and A > 0 then u(|g| > ) = u(|g]? > W) < “(‘)\gf) < o0
this gives the tail estimates as A — oo.

Definition 5.3 (Convex Function)
Let I C R be an interval. Then we say a map c: I — R is convex if for all z,y € I
and ¢ € [0, 1], we have c(tz + (1 — t)y) < te(x) + (1 — t)e(y). Equivalently, for all

x <t<yandz,y € I, we have C(t%:;(x) < C(yz;f(t).

Thus a convex function is continuous on the interior of the interval and so is Borel meas-
urable.

Lemma 5.1

Let I/ C Rbe an interval and ¢ : I — R, and let m € the interior of I. If ¢ is convex
on I, Ja,bs.t. c(z) > axr+bVr € I,and ¢(m) = am + b.

Proof. Define a = sup {w rx<m,xel } This exists in R by the second

m—x
definition of convexity. Let z,y € I,and y > m > x. Then % <a< %;gm)’
so ¢(y) > ay — am + ¢(m) = ay + b where we define b = ¢(m) — am. Similarly, for
x, we have ¢(z) > ax + b. O

Theorem 5.1 (Jensen's inequality)

Let X be a integrable” r.v. taking values in an interval I C R. Letc: I — Rbea
convex function. Then E [¢(X )] well-defined and

(B [X]) <E[e(X)].

"E[|X]] < o0

Proof. If X is a constant a.s., then done.
Otherwise, then m = E[X] € int“[

Using the previous lemma, Ja, bs.t. ¢(X) > aX +b. In particular, (¢(X))™ < |a||X|+
b]”. Hence, E [c=(X)] < |a|E[|X]] +[b] < 00,and E [¢(X)] = E [¢H(X)] — E[c (X))
is well-defined in (—oo, 00].

Integrating ¢(X) > aX + b7,

E[c(X)] > aE [X] + b = am + b = ¢(m) = ¢(E[X])
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“Interior of

'f > ggives —f < —gso f~ < g~ <lgl.
‘If E[¢(X)] = oo done.
“Expectation of 2 is 1, this is why we need a probability measure.

Example 5.1
(Q,F,P)and 1 < p < oco. If X € L>(P) then X € LP(P) as || X||, < [|X],, as P(€2)
finite.

Example 5.2
fl<p<qg<ooc(z)= |:v\% is a convex function. If X € L4(P), we then have

1X[, = E[IX?)7 = «E[X[")7 < “Ele(X[)]7 = | X[,

SoX €l = X e€LPsoLiP) C LP(P)foralll <p < g < co.

"By Jensen

Theorem 5.2 (Holder's Inequality)

Let f, g be measurable functions on (E, &, u). If p, g are conjugate, so % + % =1and
1 < p < g < oo, wehave

p(lfal) = [Elf(w)g(fv)ldu <171, - gl

Remark 37. For p = g = 2, this is exactly the Cauchy-Schwarz inequality on L? (Simpler
proof on Sheet 3 by considering [(f + g)* > 0.).

Proof. The cases p = 1 or p = oo are obvious. We can assume f € L” and g € L9
wlog since the right hand side would otherwise be infinite. We can also assume f
is not equal to zero a.e., otherwise this reduces to 0 < 0.

Hence, || f||,, > 0. Then, we can divide both sides by || f||,, and then assume || f|, = 1.

Define a prob measure P on £ by P(A) = [, | f|P div (P has prob density |f|? wrt ).
Note, for h > 0 [ hdP = [ h|f|P dpu.

The

w(lfal) = u(lf911£>0)
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= [ 171191ty
/mp 71911510 dp
_/mp_11|f>0’f’pd,u
_/\f|” 1450 AP

o
- &t

_E | lgl* r
L7

_ </If"!”1f'>0dp)lq

= (/ |g|q1|f|>0dﬂ)q

<(f |g|%m)é

= llgll

Q=

“Proven earlier by Jensen’s that || X ||, < [|X][, for 1 <p < gq.

Theorem 5.3 (Minkowski's inequality)

Let f,9: (E,&, u) — R be measurable functions. Then for all 1 < p < oo, we have
If+gll, < IfI, + Nlgll,-

Proof. The results for p = 1, oo are clear. Suppose 1 < p < co. We can assume wlog
that f,g € LP.

We can integrate the pointwise inequality |f + g|” < 2P(|f|” + |g|”) to deduce that
p(lf+9IP) < 2P[u(| f17) + u(lglP)] < coso f +g € LP. We assume that 0 < || f + g]|,,
otherwise the result is trivial. Now, using Holder’s inequality with ¢ conjugate to
D,

£+l = [17+gPdn= [ 1f+gP'1f +gld
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< [17+ gl U1+ [ 1 + g g] dp

<Al | (£ + 977+ ol 7 + 977
< (f17+a1"V au) " (171, + ol

s(/1f+gwm0;0vm+|mm)

< 1£ + gllg (171, + lgll)

p
Dividing both sides by || f + ¢g||; noting %’ = p — 1, we obtain || f +gl, < [ fll, +
gl O

“By Holder’s Inequality

So the L? spaces are indeed normed spaces.

§5.2 Banach spaces

Definition 5.4 (Banach Space)

A Banach space is a complete normed vector space.

Theorem 5.4 (L7 is a Banach space)

Let1 < p < o0, and let f,, € L? be a Cauchy sequence, so Ve > 0 IN s.t. Vm,n > N,
we have ||fm — full, < e Then 3f € LPst. f, — fin LP, so ||f, — f|l, — 0 as
n — oo.

Proof. For this proof, we assume p < oo; the other case is already proven in IB
Analysis and Topology.

Since f,, is Cauchy, using ¢ = 27 we extract a subsequence fy, of L? functions s.t.
o
< 27F < 20

By Minkowski’s inequality, for any K, we have

=3 — e
k=1

<85 < o0.
p

K K
HZ‘kaH_ka SZHka-H_ka
k=1 k=1

p
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p
SO f ‘Z}{:{:l ’ka+1 - ka d,LL S Sp < 0.

By the monotone convergence theorem applied to ’Zszl ‘ TN — f " which in-

p .
, we find

creases to ’22011 ‘kaH - fn,

<S <o
p

o
Z ‘ka‘Fl — Iy
k=1

Since the integral is finite, we see that Y 7~ ; ‘ INewr — ka‘ is finite p-a.e.. Let A be

the set where this sum is finite, then ;1(A°) = 0. For any = € A, (fn, (z)) is Cauchy
as sum finite, and since R complete it converges. Define,

. limy_ s ka (.T) reA
fe) = {0 x € A°

so fn, — f as k — oo p-a.e. and f measurable as the limit of measurable fcns.

Now, by Fatou’s lemma,
I fr = I = (| fn — fIP)
= p(tim | fo — f?)
= u(liminf | — fi?)
< limkinfu(]fn — v IP)

<eP Vn > N"

Since the f,, are Cauchy,

11, < 1F = full, + 1l < o0
—_———  ~——

<e <00

so f € LPandso f, — fin LP. Ol

“This is the N defined in the statement of the theorem.

Remark 38. If V is any of the spaces
C(]0,1]); {f simple}; {f a finite linear combination of indicators of intervals}

then V is dense in LP((0,1), B, ). So the completion (V,|| - ||,) is exactly L*(\) (Proof
on Sheet 3, first prove for finite linear combinations, use monotone class theorem, ap-
proximate continuous fcns by indicators of intervals so done).
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§5.3 Hilbert spaces

Definition 5.5 (Inner Product)

A symmetric bilinear form (-, -) : V x V — R on a real vector space V is called an
inner product if (v,v) > 0 and (v,v) =0 < v =0.

In this case, we can define a norm” ||v|| = /(v, v).

"Cauchy-Schwarz gives triangle inequality

Definition 5.6 (Hilbert Space)
If (V, (-, -))is complete, we say that it is a Hilbert space.

Corollary 5.1
The space £? is a Hilbert space for the inner product (f, g) = [ fgdu.

Example 5.3
An analog of the Pythagorean theorem holds. Let f, g € L?, then || f + g||§ =|f ||§+
2(f,9) +llgli

Example 5.4
The parallelogram identity holds: [|f + g[[3 + [|f — g3 = 2(I£I3 + l9113)

Definition 5.7 (Orthogonal)
We say f is orthogonal to g if (f, g) = 0.

Remark 39. f and g are orthogonal iff || f + g||5 = || I3 + ll9]/3-

For centred (mean zero) r.v.s X,Y, we have (X,Y) = E[XY] = E[(X — E[X])(Y —
E[Y])] = Cov X, Y which vanishes when X and Y are orthogonal.

Definition 5.8 (Orthogonal Complement)
Let V C L?(u). We define its orthogonal complement to be

Vi={fel’(u):(f,9)=0 VYgeV}
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Definition 5.9 (Closed Set)

We say that a subset V of L? is closed if for any sequence f,, € V that converges in
L?, its limit f coincides a.e. with some v € V.

Theorem 5.5 (Orthogonal Projection)

Let V be a closed linear subspace of L?(u). Then Vf € L?, 3 an orthogonal decom-
position f = v +uwherev € Vand u € V+.
Moreover, ||f — vy < ||f — glly Vg € V with equality iff v = g a.e..

Definition 5.10 (Projection)
We call v the projection of f onto V.

Proof. In this proof, we use p = 2 for all norms. We define d(f, V') = inf,ev ||g — f],
and let g, € V be a sequence of functions s.t. ||g, — f| — d(f,V).
By the parallelogram law,

2||f - gn”2 + 2Hf - grn”2 = ||2f - (gn +9m)||2 + Hgn - gmH2
2

_gn"'gm

2
~————

2%
> 4d(f, V) + |lgn — gl

=4|f + |lgn — gmll®

Thus limy, m—e0 [|gn — gmH2 — 0, i.e. g, is Cauchy in L?, so by completeness, it
converges to some v € L2. Since V is closed, v € V. In particular, d(f,V) =
infgev llg — fIl = [lv = £l

Note that d(f, V)2 < F(t) = ||f — (v+th)||* = d(f,V)? = 2t (f — v, h) + 2||h|]?
wheret € Rand h € V. Letting ¢t | 0 and ¢ 1 0, we obtain (f — v, h) = 0 for all h.
Defining f — v = u, we have f = u + v and u € V* since h was arbitrary.

Foranyge V,f—g= f—v+v—g. Sol|f—g|* = |If —v|* + |lv — g||* hence
— =

evL ev
If =gl > ||f — v|| with equality iff [|v — g|| = 0, i.e. v = g ae..
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§5.4 Conditional Expectation

If G a sub-o algebra of F (ie. G C F), then L*(Q,G,P) is a closed subspace of
L*(Q, F,P).

Definition 5.11 (Conditional Expectation)

For X € L?(Q, F,P)s.t. X measurablewrtg, | X — Y|, > || X — E[X | G]||, VY that
are G measurable.

The” conditional expectation of X given G, E[X | G] is defined as the orthogonal
projection of X on L?(2,G,P).

“This is actually only a variant of the conditional expectation.

Question
How to define E[X | G if X € L'(Q2, F,P), see Advanced Probability.

Example 5.5

Let (G;)icr be a countable family of disjoint events whose union is Q2 and set G =
0(G; i € I). Let X be integrable. Then the conditional expectation of X given G is
given by:

E[X1g,]

e 1.
P(G)) Vi €

E[X | G| =

LetY = >, E[X | Gi]lg, (ie. ifw € G, Y(w) = E[X | G;]). Check that Y is G-
measurable; Y € L?(€2,G,P); and that Y is “the” orthogonal projection of X onto
L*(Q,G,P)if X € L?(Q, F,P).

§5.5 LP Convergence and Uniform Integrability

For (2, F,P), what are the implications between convergence: a.s., in L? for 1 < p < oo,
in P and in distribution.

Let fr, = nl(o,1/n) on ((0,1), B, ). fr — 0as. but E[|f,,|]] = E[f,] = 1Vnsoas. =& LP
convergence.

P(| X, — X| >¢) < w by Markov’s Inequality, so convergence in L for 1 < p <
oo = convergence in [P.
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Theorem 5.6 (Dominated Convergence Theorem)
Let X, ber.v.s on (2, F,P) s.t. |X,,| <Y for integrable r.v. Y and they converge in
Pto X. Then X,, — X in L'(P), i.e. E[|X,, — X|] — 0.

Question
What is the “minimum condition” on (X,,) under which X,, — X in P implies
X, — X in L}(P).

Answer
Uniformly Integrable
For X € L'(P), thenas § — 0,
Ix(6) =sup{E[|X]|14] :P(A) <) AcF} =0

If not, 3¢ > 0and A,, € Fs.t. P(A4,) < 27" butE[|X]|14,] > €. Since }_,,P(4,) < oo,
by the first Borel-Cantelli lemma, we have P (ﬂn Um>n Am) = 0. But E[|X|14,] <

E| X[y 4

E [|X|1ﬂn Um>n:| =0 by DCT .

—

A, =0as,soE [‘X‘1Um>n A,

. Note that 1y 4, =10 U
m>n M n

m>n

Definition 5.12 (Uniformly Integrable)
For a collection X C L!(P) of r.v.s, we say X is uniformly integrable (UI) if it is
bounded in L' (P)?, and

Ix(0) =sup{E[|X]|14] :P(A) <), Ac F, X e X} - 0asd — 0.

‘Le. supx ey [| X, = supxex E[|X|] = 1x(1) < oo.

Remark 40. 1. Any single integrable r.v. is UL Also, true for any finite collection
of integrable r.v.s. Also, if ¥ = {X:Xarv. st |[X|<Y forsomeY € L'} as
SUPx ey E[|X|1A] < E[YlA] implies Ix(6) < Iy(d) = 0asd — 0.

2. If X is bounded in L”(IP) for p > 1, then by Holder’s inequality,

Q=

E[[X[1a] < X[, -P(A)

’ 1
bounded 53 _,0

Hence, X is UI.
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3. Note that X,, = nl[o 1] for the Lebesgue measure  on [0, 1] is bounded in L!(P)

n

but not uniformly integrable.

Lemma 5.2
X CLYP)is Ul <= supxcrE || X|Lx5x] — 0as K — oo.

Proof. ( = ): Applying Markov’s inequality, as K — oo,

P(x| > k) < EIXD _ EllX[lo] _ Tx(1)

K x = 0

Using the uniform integrability property using A = {|X| > K}, we obtain the re-
quired limit.

(=)

E[IX]]=E [|X’(1{IX\§K} + 1{|X|>K})] <K+ g

for sufficiently large K. So X is bounded in L!(P) as required. Then for A s.t.
P(A) <9,

E [\X|1A(1{|X|§K} + 1{|X|>K})} < KP(A)+E [|X|1{|X|>K}} < K§+ % <e

for sufficiently small 6. O

Theorem 5.7
Let X,,, X be r.v.s on (€2, F,P). Then the following are equivalent.

1. X, X € L}(P) and X,, — X in L}(P).

2. {X,, : n € N} is uniformly integrable, and X,, = X in P.

Proof. (1) = (2): Using Markov’s inequality,

E[|Xn — X|]

P(’Xn—X|>€)§ -

— 0

so X, > X inP.
Choose N s.t. E[|X,, — X[} < §Vn > N. {X1,...,Xn_1, X} is finite so UL So
Choose 0 s.t. E[| X[|14] < § and E[|X,[14] <eVn=1,...,N —1whenP(A) <.

E[[Xn|la] SE[|Xn — X[1a] +E[|X[14] < 5 +

N ™
N ™
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So X is Ul

(2) = (1): X,, » X in P, so take a subsequence nj, s.t. X,,, — X a.s.. Then,
E[|X]=E [limkinf |Xnk|] < “liminf E [| Xy, ] < T (1) < oo,

so X € LY(P).

Next, we define truncated r.v.s XX = max(—K, min(K,X,)) and X¥ =
max(—K, min(K, X)). Then XX — XXinP (as P(| XX - X&| > ¢) < P(|X,,— X| >
£))¢. And | XX| < K Vnsoby BCT, XX — XX in L!. Now,

51, -1 <2}, 3£ o5 - x4] v ]
=E || Xall{x, o1 + E HXf - XKH +E [|X[1qx)> 5]

<e€

by choosing sufficiently large X (by UI) and n. O

“Fatou’s lemma
YAs X is UL, hence L' bounded.
‘Aside: If X,, — X inP and f cts, then f(X,) — f(X)inP.
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§6 Fourier transforms

§6.1 Fourier transforms

In this section, we will write LP = LP(R?) for the space of complex valued Borel meas-

urable fens on RY ice. f: RY — Cs.t. || f[|, = (fga |f(2) d,u(:v))% < ooforl<p < oo.

Remark 41. For g measurable s.t. [ |g] < oo, define [ g(z)du(x) = [Re(g(z)) du(x) +
i [ Tm(g(2)) dyu(a).

For f,g € L2, (f,g) = [ f(x)g(z) du(z) is an inner product on L?(p).
For any y € RY,

[Ha-pde= [sly-a)de= [ @) da
:/f(—m)dm.

This is by the translation invariance and = — —z symmetry of A, proved in Sheet 3. Also,
fora € Rwitha #0, [ f(ax)dx = a—ld [ f(z)dz.

Definition 6.1 (Fourier Transform)
Let f € L'(R%). We define the Fourier transform f by

fw) = [ r@et o

where u € R and (u, z) = "% | uz;.

Remark 42. Note that ’f(u)‘ <|fll;, YueR%ie feL>.

Also, if u,, — u, then e*(tn-?) — eiw) so f(z)eun®) — f(x)eiuwe); \f(x)ei<“"’x>] <|f(2)]
and f € L'. By the DCT f(u,) — f(u). Moreover, lim, | f(u) = 0 (Riemann-
Lebesgue Lemma, Sheet 3). Thus f € Cy(R?) = {f bounded cts and vanishing at + co}.

The map is 1 — 1 (but not onto), its injective but not surjective.

Definition 6.2 (Fourier Transform)

Let 11 be a finite Borel measure on R?. We define the Fourier transform of the meas-
ure for u € R? by

i) = / i) dyy(z)
Rd
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Note that | u( )| < p(R ) and /i a bounded cts fcn on RY. If 1 has a density f (wrt \),
i= fgad™ flz)de = .

Definition 6.3 (Characteristic Function)

Let X be an R%valued r.v.. The characteristic function (c.f.) px of X is the Fourier
transform of its law pux = Po X!, So,

px(u) = fx(u) = / e duy(z) * = / o) dp = E [e““’X)} .
SN——

dPoX —1(z)

“Note that v o f~*(g) = v(f o g).

In particular if X has pdf f, then oy (u) = f(u).

Definition 6.4 (Fourier Inversion Formula)

Let f € L'(R%) s.t. f € L'(R%). Then we say that the Fourier inversion formula
holds for f if

x - Fu)e %) duy,
F@) = Gy L, Fwe™

a.e. in R,

Remark 43. The RHS is cts by DCT, so for f cts the equality is everywhere.

Remark 44. The map from L' — C, by f — f is1 — 1 (for f,g € L' with f = §, then
f—gelLl andf g=f—§=0. So by Fourier Inversion f — g =0 a.e.)

§6.2 Convolutions

A key concept in Fourier analysis is convolutions.
Definition 6.5 (Convolution)
Let f € L?(R%), 1 < p < co and v be a probability measure on R%. We define their

convolution f * v by

(f*xv)(z) = {fRd y)dv(y) if integral exists;
else.

Remark 45. If 1 < p < oo, by Jensen’s inequality;,

/Rd |f *v(x)Pdz < /Rd (/Rd‘f(x_y”dy(y))pdx
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/Rd If(z —y)Pdv(y)dz asp>1

= Jou o 1€ z —y)[" dz dv(y)

- /Rd /Rd |f(z) |p dz dr(y) as A translation invariant

= ||f|[? < oo as v a prob measure.

Hence f*visdefined a.e,, and || f x v||, < || f]|, < oo. When v has pdf g € LY, fxv(x) =
JF(@=y)g(y)dy = [ * g().
In the case where v has a density g with respect to the Lebesgue measure, we write

fxg=fxv.

Definition 6.6 (Convolution)

For probability measures p1, v on R?, their convolution v is a probability measure
on R4 given by the law of X + Y where X,Y are independent r.v.s with laws p and
v, SO

(L) (A) =P (X +Y € A)

la(z +y)d(p@v)(z,y)
R4 xR4

/R/ La(e + ) du(y) du(z)

If phas density f € L! wrt the Lebesgue measure, px1 has density fxv wrt the Lebesgue
measure. Indeed,

(uxv)( / / la(z +y)f(x)dzdr(y)
Rd

=/W/Rd1A z)f(z —y) dedv(y)
= [ 1@ [ S - vl da

= [ ta@)(f + v)(@) do
R

Proposition 6.1
f/*\u(u) = f(u)p(u) forall f € L' and v a prob measure.

“wrt Lebesgue measure

61



Proposition 6.2
prv(u) =E [ei<“’X+Y>} =E [e““’X)e““’Yq = ji(u)?(u) for all s, v prob measures.

§6.3 Fourier transforms of Gaussians

Definition 6.7 (Normal Distribution)
The normal distribution N (0, t) is given by the probability density function

1 22
e 2t

gt(x) = \/ﬁ e

If 7 is the characteristic function of Z ~ N(0,1),i.e. pz(u) = [ \/%e_%/zewz dz then
by a previous thm, ¢, is differentiable and can use DUTIS.

d
du qu e \/27r/du

= —/izefz [2etuz q
V2T
7 < 22
= e 2”7 dz

—22/2€iuz) dz

iue'™ dz
r/
= —upz(u)
Hence,
T (% () =ue® () - T upz(w) =0

11,2 ’LL2
In particular, pz(u) = ¢z(0)e” 2 = e 2. In other words, §;(u) = V27g:(u).

In R?, consider a Gaussian r.v. Z = (Z1, ..., Z;) with iid entries N (0, 1). Then, the joint
pdf (wrt %) of /17 is

d
1 j d
= e 2t = 27Tt T2e 2t
H vV 2mt (2mt)

J=1

The Fourier transform of g; is

d
gt(u) —E [ei<u7\/iz>:| —E [H eiu]'\/zzj‘] — H E [eiu]'\/izj} — H e—u?% — e 32
j=1 ” .
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d w2
which implies that in general, §;(u) = (27) L2 e” = (2%)%7&‘%9% (u). Taking the
2

g1 (u) = (27)%g;. Since g(—z) = gi()

t
and the Lebesgue measure is translation invariant, we have

1 A 1 —i{u,x) A
0(x) = Gryal®) = g [ e i) du

so the Fourier inversion theorem holds for g;.

Definition 6.8 (Gaussian Convolution)

We say that a function on R? is a Gaussian convolution if it is of the form
frg(x) = /}Rd flx=y)g:(y) dy
where z € RY,t > 0, f € LY(RY).

1. f+g: € L' as f € L' (proved earlier) and || f * g:||; < || fl; < oc.

2. f x g is continuous on R? by noting f * g:(z) = [pa f(y)g:(x — y) dy by translation
invariance, then using DCT noting g bounded as cts.
3. f * gt is bdd.

Frgnw) = Flu)an(u) = flu)e "5

f*grisbdd ctsas f x g, € L.
el <l <lil.

For ;v a prob measure and any ¢t > 0, i * g; is a Gaussian convolution. As, g; =
gi/2 * g/2 as gr is the density of a N(0,¢) r.v.. Then p* gr = (11 * g¢/2) *Gy 2-
| P |

N A e

Ly

Lemma 6.1

The Fourier inversion theorem holds for all Gaussian convolutions.

Proof. Let f € L; and t > 0. We can use the Fourier inversion theorem for ¢;(y) to
see that

(r'f xgula) = )" [ flz = v)as) dy

= [ J@=y) [ e g (w) dudy
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Lemma 6.2 (Gaussian convolutions are dense in LP)
Let f € LP(R?) where 1 < p < co. Then || f * g; — f|, = 0 ast — 0.

Proof. One can easily show that the space C.(R%) of continuous functions of com-
pact support is dense in LP. Hence, given ¢ > 0, 3h € C.(RY) s.t. |f — hll, < 3
Then by linearity of convolution,

S
1F % ge = hox gell, = 1(f = h) = gell, < Nlf = Rll, < 5

So by Minkowski’s inequality,

2e
1f*ge—fll, < IHf xgt—h *gtlllerth - fllleth*gt —hll, < 5 +lhxg —nl,
<e/3 <e/3

so it suffices to prove the result for f = h € C.(R?). We define a new map

) = [, Iha—9) = h(@)P da

Since h is bdd (cts on compact support) and supported on [—M, M] say, for some
M >0.Asy — 0, |h(z—y)—h(z)|P — 0ashcts. Alsofor |y| < 1, |h(z—y)—h(z)]P <
2P||h(2) (|21 jz|<p41, With the RHS being integrable. Hence by DCT, e(y) — 0 as
y — 0.

Hence, by Jensen’s inequality,

p
dx

gt = bl = [ | [ he = y)artw) dy = o)
[ (= 9) = hi@))ge(w) dy

R4 d
< [, [ 1na = y) = ha)P" da gi(y)" dy
Rd JRd

P
dx
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[ ewantw)dy
:/d e(y )td1/291<\%)bdy

= / g1(2)dz

—e( 0) 0ast—0

— 0 by DCT.

“g: the measure for our expectation in Jensen’s so unaffected.
"Note that g;(u) = ﬁgl (%)

Theorem 6.1 (Fourier Inversion)
Let f € L'(RY) bes.t. f € L'(RY). Then a.e. in R?,

T —L e~ Hw) £0,) du
F@) = G [, fw)d

Remark 46. This proves that the Fourier transform is injective; f’ = ¢ implies f/—\g =0
so by Fourier inversion, f = g almost everywhere. The identity holds everywhere on
R? for the (unique) continuous representative f in its equivalence class.

Proof. Consider f * g; and

fi(z) = (2711')d /Rd e—i(u,x)f(u) e*‘g\%

gt ()

du

As Flholds for f * g;, f * gt = [.

So, || ft — £l =99 by density of Gaussian convolutions and as f € L'. So f; — f

in P and thus 3 a subsequence s.t. f;, — f a.e.

—|u)?

Also, e w2} f(y)e 5~ is bounded by ‘ f(uw)|, which is integrable, and —
e*i<“’9”>f(u) ast — 0. So by DCT, fi(z) — G )d [ e w2 f(y)duast — 0 a.e.

Hence [ = @ [ e~ wa) f(y) du a.e. as f; converges to it a.e. and f;, — f. O

Theorem 6.2 (Plancherel)
Let f € LY(R%) N L3(RY). Then |||, = (27)"2

fH2

65



Remark 47. By the Pythagorean identity, (f, g) = (27) ¢ < f §>.

Proof. Initially, we assume f, f € L'. In this case, f, f € L>, and (z,u) — f(z)f(u)
is integrable for the product Lebesgue measure dz ® du on R? x R?, so Fubini’s
theorem for bounded functions applies.

@m)?|| fII5 = (27r)d/d f(2)f@) de
R
_ e_i<u,x> Au w ) F()dz < oo (an
—Rd</Rd f( )d>f( )d < (adeLz)
~ Jga f(U)/Rdlei<uw>f($) dz du
, f(“)f(u) du

2

|
 —

R

>

2

Now, let f € L* N L2 Fort > 0, take f; = f * g — fin L% and so | fi|, v 1£1l2
— —
A A A 'll,2 A A
continuity of the norm. Also, f:(u) = f(u)g:(u) = f(u)e_| . So ‘ft(u)‘ T ‘f(u)’ as
L2 N . 12
t — 0. Thus Hft(u)Hz = [1Fi@)P du — [ 1f(u)? du= HfH2 by MCT.

N 12
But, f; = f*g; € L',and f; € L'. Soby the first part of the proof, (27)?| f;||3 = HftHg'

Letting t — 0, we get (2m)%||f||3 = Hsz O

Remark 48. Since L; N Ly is dense in L?, we can extend the linear operator Fy(f) =

(27)"2 f to L2 by continuity to a linear isometry F': L2 — L2 known as the Fourier—
Plancherel transform. One can show that F is surjective with inverse F~1: L? — L2.

§6.4 Characteristic fcns, Weak Convergence and the CLT

Definition 6.9 (Characteristic Function)

For ar.v. X, its characteristic function is

px(®) = Ele™] = fix = [ ) dux(a)

Example 6.1
Consider the Dirac measure &y on R, so dp(u) = Jr €% ddp(z) = 1. But the inverse
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Fourier transform would be 5 [ €% du which is not a Lebesgue integrable func-
tion.

To circumvent this, we test ‘i on nice test fcns f.

Remark 49. 2 p.m.s y,v on R coincide <= [ fdu= [fdv Vf:R?— Rbddcts'’. In
fact, enough to have condition holding Vf € CZ° (space of infinitely differentiable fcns
with compact support).

Aside

(1 : f — p(f) mapping from C° — R is a linear, cts (on Ly topology), hence 1 is
“Schwartz distribution”).

Definition 6.10 (Weak Convergence)

Let (un), u be Borel prob measures on R?. Then s, converges to ;i weakly if
[ fdun, — [ fduasn — oo forall f : RY — R bdd cts.

Remark 50.
1. For a sequence of r.v.s X,, and X anotherr.v., X;,, — X weakly if 1 x, — px weakly.

2. A sequence of prob measures, 1, can have at most one weak limit by previous
remark (the one about 2 p.m.s. coinciding).

3. If X, — X weakly, and h : R — R¥ cts, then h(X,,) — h(X) weakly (as r.v. in
R¥). (Continuous Mapping Theorem) (from definition as f o h bdd cts if f bdd
cts).

4. Suffices to check condition in definition for all f € C2°. (“tightness” argument, i.e.
JK compact s.t. p,(K¢) < e Vn if u,, — p weakly. Sheet 4)

5. When d = 1, this is equivalent to X,, — X in distribution (i.e., Fx, (z) = Fx(z) at
all points where x — Fx(z) is cts). Sheet 4 Q1, approximate indictators.

Theorem 6.3
Let X be a r.v. in R? with law px. Then the characteristic function px = jix

'RHS implies LHS, as if true for f = 1, then true on a 7-system so done. We can approximate such f
with bdd cts fcns and so done.

67



uniquely determines s x. In addition, if px € 12 g g e 2 A e il )
ﬁ Jra €44 o x (v) du ace..

Proof. Let Z = (Z,,...,Z;) be a vector of independent and identically distributed
r.v.s, independent of X, with Z; ~ N(0,1). Then v/Z has pdf g; and X + /tZ has

A~ @ 2
pdf fi = pux * gi. Then, fi(u) = px(u)ge(u) = @X(u)e*%. So by F.I of Gaussian

convolutions,
1 —i(u,x —
@) = G fou e px (e

which is uniquely determined by ¢ x.

|u 2¢

‘Tdu

We show on an example sheet that two Borel prob measures , v on R? coincide iff
w(g) =v(g) Vg: R?— Rbdd, cts with compact support. Now,

| 9@ /u(z) dz =E | g(X + Vi2)
Rd ~—_———
—+X as.
Since ‘g(X + \/EZ)’ < |9l < o0, by BCT, this converges as ¢t — 0 to E [g(X)] =
Jra 9(z) dpx (x) (x). So by uniqueness of limits, ¢ x determines .

|2t

If px € L, then e=¥ %) oy (u)e™ 2 — e~ oy (u). By DCT, fi(z) — fx(z) as
t— 0 V.

In particular, since px * g¢ > 0, fx > on R?. Then, for any bdd cts g with compact
support,

g@)filw)  de [ gfa)fx(w)de by DCT as fu(@)] < llexl
As t—0,—g(z) fx (z)

By (%), [ g(z)dpx(z) = [ g(x)fx(z)dz Vgbdd cts with compact support.

Thus px has density fx. O

Theorem 6.4 (Lévy's continuity theorem)
Let X,,, X ber.v.son R, s.t. px, (u) = ¢x(u) Yu, asn — co. Then X,, — X weakly.

Remark 51. 1. Astronger version of this theorem is thatif px, (u) — ¢(u) Vu for some
fen o that is cts in a nbd of 0, then ¢ is the c.f. of some r.v. X and X,, = X weakly.

2. Cramer’ Wold device: Let (X,),X be rv.s on R?, then X, — X weakly iff
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(u, Xp,) — (u, X) Yu € R? weakly or in distribution in R. LHS = RHS
by continuous mapping theorem, the converse holds as ') js bdd cts so
E[f(Xn)] = ¢x, (u) = E[f(z)] = ¢x(u) Yu. So done by Lévy’s.

3. The converse holds by definition of weak convergence, testing against the complex
exponentials in the Fourier transform.

Proof. Let g : R — R be compactly suppored and Lipschitz cts, i.e. [g(z) — g(y)| <
Cylz — y| Va,y € RZ This includes all g € C2° as any fcn with bounded derivative

is Lipschitz. Enough to show, E[¢(X,,)] — E[g(X)].

Let Z ~ N(0, I;) indep of (X,,), X. Then for fixed ¢ > 0, choose ¢ > 0 small enough
st. CgVtE[|Z]] < £. Then,

lux,(9) — px(g)| = [E[g(X )] —E[g(X)]|

< [B9(Xn) — 9(Xn + Vi2)]| + [ [9(X) ~ 9(X + vi2) |
‘E[gX—i—\fZ (X+\fZ)”

<E [|9(Xn) — 9(Xn + VEZ)|| +E [|(X) - (X + V2)||
‘E[ (Xn +\fZ)—gX+\fZH
< 20,VIE[|Z]) + |E [9(Xn + VEZ) - (X + VE2)]|

<—+’E[ (X + VEZ) - g(X + VEZ)]|

We show that the remaining term can be made less than § as n — oco. Let f; ,(z) =
gt * px,,. Then, by Fourier inversion for Gaussian convolutions,

E [9(Xa+Vi2)] = [ 9(@)fin(e)do

1 —i{u,x —lelEe
:W/Rdg(x)/we w2y (w)e = dudz

Since Characteristic functions are bounded by 1, we can use DCT with dominating

function |g(z )|e == to find
1 —i{u,T =
E[g(X, +vi2)] - = / e )/Rde ) o3 (u)e

— [ s@f:
R4

=E |g(X + V2 Z)}

lul?t

dudz
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where f; = g¢ * ux. So as n — oo, the difference between these two terms can be
made less than § as required. O

Note. We like adding Gaussians, as pdf of X + Z exists due to Z having a pdf. Also, pdf
is a Gaussian convolution, which is nice.

Theorem 6.5 (Central Limit Theorem)

Let X1,...,X, beiid r.v.s on R with E [X;] = 0and Var X; = 1. Let S,, = > X,

Then
1

weakl
— 5, = a7 ~ N(0,1)
Vin ’
In particular,

P(\/lﬁSngx> —P(Z <x)

"As d = 1 equiv to in distribution convergence

Proof. Let X = X;. The characteristic function p(u) = px(u) = E {e“‘X } satisfies
©(0) = 1. As E[X?] < oo by DUTIS ¢/(u) = iE [Xe"“X}, ¢"(u) = i’E {XQe"“X}
(Sheet 3). We can find ¢/(0) = iE[X] = 0 and ¢”(0) = —E [X?] = —Var X = —1.
By Taylor’s theorem, ¢(v) = 1 — % + o(v?) as v — 0. Now, denoting ¢, (u) =

Pl (u), we can write

I
S
~
Sl
~——

fixing v and letting n — oo

The complex logarithm satisfies log(1 + z) = z + o(%), so by taking logarithms, we

find , )
U 1 U
log pn(u) =nlog [1— — 4o =) | =%
0g ¢n(u) nog( 2n+0<n>> 5
" 2
Hence, ¢, (u) — = wz(u). So by Lévy’s continuity theorem, the result fol-
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lows. O

Remark 52. The CLT in R¢ can be proved similarly using the Cramer-Wold device and
properties of multi-variate Guassians.

Definition 6.11 (Gaussian)
Ar.v. on R is Gaussian (N (u,0)), if it has density

1 _@-w?
€ 202
\2To

forpeR,o>0.

Definition 6.12 (Gaussian)

Arv. X in R? is Gaussian if (X,,, v) are Gaussian for each v € R,

Example 6.2

IfXxX,... X, id N(0,1), then X = (X1,...,X,) is Gaussian in R"™. Check the c.f. of

(X, )

Proposition 6.3
Let X be Gaussian in R", A is an m x n matrix and b € R™. Then

1. AX + bis Guassian in R™.
2. X € L*(R%),and p = E [X] and V = Cov (X;, X;) exist and determine px.

_(wVu)
2

3. px(u) = elww
4. If V is invertible, then ;. x has pdf

d
2

(@) = 2m) et V) Fep{ =3 (o - Vi - )}

5. Subvectors X (1), X(2)" of X are indep iff Cov (X(y), X(2)) = 0.

aX(l), X(2) disjoint X

Proof. Proofs are easy, and in examples sheets and James Norris’ notes. O

71



§7 Ergodic theory

§7.1 Laws of Large Numbers
Proposition 7.1 (Weak Law of Large Numbers)

Let (X, )nen be iid s.t. E[X,,] = pand Var X,, = 0% < co. Then 2 37 | X; — pin
probability as n — oo.

Proof. By Chebyshev’s inequality,

1 n
J(EPEE:

1 - o? n—00
>e| <—=Var) X, =— ——0
>_n252 Z:ZI ' ope?

So 2 37 | X; — p in probability. O
This result has several weaknesses, and we can provide stronger results.

Proposition 7.2 (Strong Law of Large Numbers)
Let (X;,)nen beiid s.t. E[X,] = p < co. Then 3™ | X; — pa.s. asn — oo.

Proposition 7.3

Let (X,)nen be indep with E[X,,] = pand E [X}] < M Vn. Then 137 X; —
a.s. asn — oo.

Proof. LetY, = X, — p. ThenE[Y,] = 0, and E[Y,}] < 24(E [X}] 4+ p*) < oo
So we can assume p = 0. For distinct indices i, j, k, ¢, by independence and the
Cauchy-Schwarz inequality, we have

0=E[X;X;X;X,] =E {XngXk} =B [XE)X]}

E | X7X7| < \E[X}][E |X}] <M

So we can compute

(&)

+ 6

:Elznjxg*

=1

ZXZ?X]?] <nM +3n(n—1)M < 3n°M
1<j
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Let S, = > ;-1 X;. Then,

o] S, 4 S 4 g
ence >0, (2n oo almost surely. But then almo , 50 2o
H don 1( ”) < Imost ly. But th ( ) — 0 almost surely, so 22 —

n
n n

0 almost surely. O

§7.2 Invariants - Measure Preserving Transformations

Let (E, &, 1) be a o-finite measure space.

Definition 7.1 (Measure Preserving)

A measurable map ©: E — E is measure-preserving (m.p.) if o ©71 = y, ie.
uO™H(A)) = u(A) VA&

In this case, for any integrable function f € L'(u), we have [; fdp = [5 fo©duas
Jpfo®du=[pfduoe".

Definition 7.2 (O-Invariant)

A measurable map f: £ — Ris called O-invariantif f o © = f.
A set A € £ is O-invariant if ©71(A) = A, or equivalently, 1 4 is ©-invariant.

The collection £g of O-invariant sets forms a o-algebra over E. A function f: £ — Ris
invariant iff f is Eg-measurable (Sheet 4).

Definition 7.3 (Ergodic)
© is called ergodic if the &g is u-trivial, i.e. VA € Eg p(A) = 0 or u(A€) = 0.

The point is an ergodic transformation mixes the sets well. Boltzman (1880), Ergodic
hypothesis - over long times, a gas particle in some space will “fill the whole space”,
it will be arbitrarily close to any point in the space. You could imagine a trajectory,
z,0(x),0%(z),...

For Markov Chains, ergodicity <= irreducibility.
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Fact 7.1
If f is ©-invariant, O is ergodic iff f is constant a.s. on E (Sheet 4).

Proof. See Sheet 4. We want to show distribution of f is a step function. We know
f€&osopu(ft(—oco,x)) =0or u(ft[z,00)) = 0. Hence f is constant. O

Example 7.1

Consider (E, &) = ((0, 1], B) with the Lebesgue measure p.. The maps O,(x) = z+a
modulo 1 and O(z) = 2z modulo 1 are both m.p., and ergodic unless a € Q (Sheet
4).

§7.3 Ergodic Theorems

Lemma 7.1 (Maximal Ergodic Lemma)

Let (E, &, 1) be a o-finite measure space. Let ©: E — F be m.p.. For f € L(u1), we
define So(f) = 0and S, (f) = X7=5 f o OF. Let S* = S*(f) = sup,,>o Sn(f). Then
f{S*>0} fdp = 0.

Proof (non-examinable). Define S} = maxg<, Si. Then clearly S} 1 S*, and S < Sj;
for all K < n. Note thatform <n+1,S5,, =Sn,-100+ f < Sro0O+ f.

Define A,, = {S} > 0}. On 4,,, we have

S*= max S < max S. <8500+
" 1<k<n k_1§k§n+1 k= "*n f

since Sy = 0. We can integrate this inequality to find

/S;dug/ S;o(%d,u—i-/ fdu
An An An

On A¢, we must have S} =0 < S o ©. Hence,

/S:Ld,uS/S;o(ad,u—i-/ fdu
E E An

Since © is m.p.,

[ siduz [ Sidu+ [ fap
E FE An
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so we obtain (as S} € L1)

/ fdu>0 Vn.
An

Ap, = {5} >0} = {maxo<m<n Sm >0} = Un—og {Sm >0} T Un—o {Sm >0} =
{sup S, > 0} = S*.

Hence, 14, — 1+~ and so f1a, — flig«~oy pointwise, and |f14,| < |f| € L*(n),
by DCT

/ fduzlim/ fdu >0
{S*>O} n—oo An

as required. O

Remark 53. Let p be a finite measure. Then for f € L' and any a > 0, define S, = S’“,Ef )

and S* = sup; Sk, then

_ 1 1
p(8>a) <~ [ sap< [ 17ldu.
o J5 >a o JE

Proof. Proof is left as an exercise, follows from shifting f by a and then applying
the maximal ergodic theorem. O

Exercise 7.1. For y a prob measure and f € L!(u), show that {S"(f) 'n € N} is UL

n .

Hence S”T(f) — f in L' by Birkhoff’s. If © is ergodic, then f = [ fdu a.s..

Theorem 7.2 (Birkhoff's Ergodic Theorem)

Let (E, &, 1) be a o-finite measure space. Let ©: E — Ebem.p.. For f € L'(E, &, ),
we define Sy = 0 and S,, = S,.(f) = Zg;é f o ©F. Then 3 a O-invariant integrable
fen f € LY(E, &, p) with u(‘ﬂ) < pu(|f]) st. 22 5 Fae asn — 0.

n

Remark 54. If © ergodic, f is constant a.e..

Relating back to the gas example, x,0(z), ... is the trajectory of a gas particle. Then

S”T(f) is the average of f along the trajectory (time average). Then f is the average of f

over the whole space.

Proof (non-examinable). Since u(|f o ©"7 1) = u(| f]), we have u(|S,|) < nu(|f|) and
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thus by Fatou’s

u(‘f‘) = ,u(liminf S ) < liminf,u< - ) < u(lf])-
n n n n
Note that
Sp00 Sy —fn+1l
n  n+l n
So, lim sup 5100 = lim sup L im sup —
n n n n+1 n n

and the same holds for liminf,. Hence limsup,, S—n" and lim inf,, S—T{L are invariant
functions. So they are £g-measurable. Hence

D=Dgp = {liminfsn <a<b< limsupsn}
n n n n

are measurable and invariant sets.
It suffices to show that p(D) = 0. As letting A = {hm inf (%) < lim sup (%)} =
Ua<beq Dap- Hence if u(D) =0 = /’L(Ua<b€(@ Da,b> =0 = pu(A) = 0. Define,

. liminf% = limsup%” x € A°

0 x€eA
then S,,/n — f p-a.e. and f is © invariant (as lim inf %“ and A are O-invariant).
Fix a < b. Note that © : D — D by invariance and © is p | p-measure preserving as

u]D (A) = (AN D) = w(©~Y(AN D)) = u(61(4) N ©~(D))

=u(© ' (A)ND) =4 . (©71(4))

Also either b > 0 or a < 0 (if @ < 0 change f to —f and a to —b, then b = —a > 0).
So assume b > 0 wlog.

We will apply the ?? with £ = D and o = pl|,. Let B € £ where B C D s.t.
u(B) < co. Let g = f —blg € L*(u). Then,

Sr(g) = Sn(f) —bSn(1g) > S, — bn

which is positive on D for some n by the definition of limsup,,. Hence, S*(g) =
sup,,>o Sn(g) > 0on D.
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So D = {S* > 0} N D. Then by the ?? on D,

OS/ gdu:/gdu:/fdu—bM(B)
DN{S*>0} D D

Hence, bu(B) < [, fdp.

By o-finiteness, this inequality extends to D; 3 measurable sets B,, T D where
p(By) < oo. Hence taking limits, by(D) = blimy, u(By) < [, fdp. Thus pu(D) < oo
as f € L.

Repeating a similar arguments to above® for —f and —a, we obtain —ap(D) <
Jp —f dp. Combining these two inequalities gives

D) < /Dfdu < ap(D)

Buta < band p(D) < oo, s0 u(D) = 0. O

“Now however we take D instead of B and ¢ = —f — (—a)lp. On D, Si(¢") = Su(—f) —
(—a)S(1p) = Sn(—f) — (=a)nlp = Sn(—f) — (—a)n as D is © invariant, i.e. S,(1p) = 1p.

Theorem 7.3 (von Neumann's LP Ergodic Theorem)

Let u(E) < oo and 1 < p < oo. Then for f € LP(u), S”(f) — fin LP as n — co.

Proof. Since © is m.p., we have

700" = [ IfPoerdu= [ ifrau= [ 1P au= sl

Thus, by Minkowski’s inequality, for all f € L” we have

So S”(f) isa contractionin LP. Foreach K > 0, we define fx = max(min(f, K), —K).
Then

Sn(f)

n

n—1 )
<axlreed,-

171,

15 = = [ 1F = FcPLigosc di

Since 17> x — 0 pointwise, and |f — fx| < 2|f|" € L', we find || f — frll, < §by
DCT, for sufficiently large K = K..

As |fx| < K, we have %‘ < K. Since y is finite, fir € L'(u), so by Birkhoff’s
Sn(fK)

ergodic theorem, — fx a.e. for some invariant f, € L!. Note that f, is
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bounded by K as (an ) is bounded by K. By the bounded convergence theorem,

we deduce that ‘ %f}{) — KH — 0 as n — oo. Further, this holds in L? since
Sn(fK) = ' Sn(fx) < £
Sy 2K)" -
‘ n fr| <( -k < 3

where the last inequality holds for sufficiently large n. Since 1 is a finite measure,

LP(u) C L'(p), hence by Birkhoff’s ergodic theorem, S"T(f) — fae asf — oo
Then, by the contraction property applied to f — fx,

-7l = [ -7l s
:/ lim inf Sn(f)_sn(fK) P
E n

n

< liminf/ Sn(£) = Sn(fx)|"
n JEg

dp by Fat
- p by Fatou

S = fP
—hmnlnf/E -
Sn(f_fK> P

n

dp

= lim inf
n

P
<liminf||f — fk|[; shown earlier by Minkowski

=17 -l < (2)

So in particular, f € LP. Then by Minkowski,

n T Sn B Sn Sn a T T
‘ngf)_f S‘ (f) . (fK) +‘ (JK)_]@K +Hf_fKH
P P P &
[o=st) 2
n » 3
<If = fill, + 5 =<
for sufficiently large n. O

Remark 55.

1. If  a prob measure and O ergodic, then f is a constant a.s., so f = [ fdu. Also,
J]du=J 50 52U 4yy — [ fdp Vn. Hence [ fdu= [ fdp.

Then, (f) 71_)—00> E[f] pa.s. and in L.

pasand L1

2. For ©m.p. and f ¢ L!, 52)
version of) the projection of f on L?(&g).

E[f | £o]. For f € L% E[f | o] is (a
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§7.4 Infinite product spaces

Let E = RN = {z = (z,)nen} be the space of real sequences. Consider

C:{A:HAn:AneB,HNeN,Vn>N,An:R}

n=1

This forms a 7-system, which generates the cylindrical o-algebra o(C). We can show
that o(C) = o({fn : n € N}) where f,(z) = x, are the coordinate projection functions
on E. We can also show o(C) = B(RY) for the product topology or the topology of
pointwise convergence.

Let (X, )nen be a sequence of iid r.v.s defined on (2, 7, P) with common law px, = m
for all n; this exists by an earlier theorem. We define a map X: Q — E by X(w) =
(X1(w), X2(w), ... ). This is ¢(C) measurable, since for all A € C, we have

Xﬁl(A) = {w : Xl(w) € Al,...,XN(w) S AN} = ﬁ X;l(An) e F

n=1

We denote p = P o X !, which is the unique product prob measure in E satisfying

%) N
(ML) - gm0
= lim P(X1€A1,...,XN€AN)
= hm P(Xl S Al) (XN S AN)

H (Xn € 4y)
Note that we need to use finiteness of N to exploit independence of the X;. We call

(E,&, 1) = (RN, 5(C),mY) the canonical model for an infinite sequence of iid r.v.s of
law m.

Definition 7.4 (Shift Map)
The shift map ©: £ — E'is defined by O(z1, z2,...) = (22, 23,...).

Theorem 7.4
On (E, &, 1), the shift map © is measurable, m.p. and ergodic.
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Proof. Measurability is obvious.

For A € (C,
,U,(A) :]P’(Xl EAl,...,XN EAN)

Z]P’(Xl GAl)-~-P(XN GAN)
N

= Hm(An)
n=1

:]P(XQ E Al)"-P(XN+1 € AN)

= u(©7(4)

so © is m.p. as m.p. on 7-system C.

Recall that the tail o-algebra is defined by 7 = 1, 7, where 7, = 0(Xy41, Xp42,...) =
o(fn+1, fa+2, - . ). Note that for all A € C, we have

O7"(A)=R"x A1 x Ag x ...
:{I'ERN:($n+1,xn+2,...)€A}€7;L

Now, if A is invariant, A = ©7"(A) € 7, Vn, so A € T. By Kolmogorov’s zero-one
law as (X;) iid, u(A) = 0 or pu(A) = 1 as required for ergodicity. O

We can apply Birkhoff’s ergodic theorem to ©. If f € L!(p), then S”T(f) — f e Llp
almost surely. Since f is invariant and © is ergodic, f is almost surely constant. By von
Neumann’s LP-ergodic theorem, convergence holds in fact in L.

§7.5 Strong law of large numbers

Theorem 7.5

Let m be a prob measure on R s.t. [ |z|dm(z) < oo and [pzdm(z) = v. Let
(E, &, ) be the canonical model where the coordinate maps f,,(z) = x,, are iid with
law m. Then

M({xGRN:$1+x2+‘.'+xn—>u}>:

n

Proof. Let © : E — E be the shift map O(z1,x2,...) = (z2,23,...). Itis m.p. and
ergodic by previous thm. Consider f : E — Ras f(z) = z1. Then f € L'(u),
since [ |fldp = [gduo f~1(z) = [g|z1|dm(z1) < oco. So by Birkhoff and von-
Neumann, as © ergodic, by ??, S"qgf) = fbedtn o f = [ fdp = [paidm(z) =v
W a.s. O
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Theorem 7.6 (Kolmogorov SLLN (1930))
Let (X, )nen beiid r.vss.t. E[|X;]] < co. Then L 37 | X; — E [X;] almost surely.

Proof. Let m be the law of X,,, v = E[X;] and y = Po X ! where X : O — E = RN
is X (w) = (X1 (w), X2(w), ... ). Then apply ??,

P(;zn:Xi—)E[Xlo :u({x:W—)u}) =1

i=1

O]

Remark 56. The hypothesis E [| X|] < oo cannot be weakened; we see on an example sheet
that 1 3> | X; can exhibit various behaviours. Note that this notion of convergence is
stronger than the weak convergence seen in the central limit theorem. The law of the
iterated logarithm is that

) X1+ + X,
limsup ————= =
n v2nloglogn

almost surely, and —1 for the limit inferior. In particular, the central limit theorem does
not hold almost surely.

Corollary 7.1
By von Neumann'’s ergodic theorem, in the strong law of large numbers, we have
E[|1sh, Xi —E[X]|] - 0asn— co.

n

Aside
1. If (11n) is a sequence in R™ of prob measures that converges weakly to p, then (u,,)
is “tight”, i.e. Ve > 0, 3 a compact set K s.t. u,(K¢) < e Vn.

2. If (un) a sequence of prob measures that are tight, then 3 a subsequence (n;) and a
prob measure p s.t. (f, ) — p weakly (Prokhorov’s thm or Banach-Alaoglu thm).

3. If distributions F;, 4, F, then 3 a prob space s.t. nx,, is F,, and X,, = X a.s..

4. If X, 4 X and Y, %Y then X, +Y, A X +Y,infact X,Y are not necessarily
even defined in the same prob space so X + Y doesn’t even make sense.

However, if X,, % X and Y,, 2> ¢, where c is a constant. Then (Xn,Yn) — (X, ¢)
so by continuous mapping thm X,, + Y, L X +e (Slutsky’s thm).
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This is quite useful in stats where with CLT if variance is unknown we can replace
it with std deviation which converges to the true value a.s. and hence in P.
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